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Abstract
Doctoral Programme: Economics, Business, Finance and Computing Science

Doctor of Philosophy

The economic impact of autonomous technologies
and a model for the circular economy

by Pablo CASAS ALJAMA

This dissertation offers a comprehensive analysis of the wide-ranging economic implications and labour
market consequences of autonomous technologies, while also considering the role of the circular econ-
omy in sustaining economic growth. Spanning three thematic areas across nine self-contained essays,
the research provides a combination of macroeconomic modelling and microeconomic evidence. The
thesis is divided into three main parts, leaving aside the introduction and the concluding remarks. The
first part focuses on macroeconomic theoretical modelling of a dual traditional-autonomous economy,
employing dynamic general equilibrium models to evaluate the impact of autonomous technologies on
the economy. The second part provides microeconomic evidence regarding the influence of autonomous
technologies on labour markets. Finally, the third part presents a novel perspective on the integration of
circular economy concepts into a neoclassical dynamic general equilibrium model. The thesis initiates
its exploration through the lens of a dual traditional-autonomous economy model to study the economic
implications of automation, discovering that the effects are largely determined by the adoption rate of
autonomous capital and its elasticity of substitution with traditional technology. A significant finding
suggests the existence of an adoption rate threshold, beyond which the process of automation can lead
to a complete shift from traditional capital and labour. Furthermore, the study uncovers the necessity
for a profound reform of current tax systems by observing a reduction in the government’s size due
to the substitution of traditional tax-bearing inputs with autonomous technology. Further exploration
into the optimal tax policy for maintaining the social security contributions to GDP ratio by taxing au-
tonomous capital suggests that a robots’ social security tax paid by employers of autonomous capital is
the most efficient long-term strategy. The dissertation then pivots to provide microeconomic evidence,
examining the impact of digitalization on labour markets, using data from the US and European coun-
tries. The research provides a view of the effects of digitalization on the US employment landscape,
presenting mappings that classify occupations based on their relationship with automation and AI. The
study also investigates the implications of the automation process and AI on early retirement decisions
across 26 European countries, revealing a significant role of technological change in these decisions.
Moreover, this part analyses the role of computerization, AI, machine learning, and occupational reor-
ganization capacity in unemployment probabilities among older workers, indicating the heterogeneity
in the impact of new technologies on the labour market. Finally, this section explores the implications
of digitalization for worker mobility, illustrating a significant influence on the relocation of displaced
workers. Finally, the thesis presents a novel mathematical description of a circular economy by incor-
porating the concept into a neoclassical dynamic general equilibrium linear economy model. The study
reveals a positive S-shaped relationship between the optimal recycling rate and economic development,
concluding that increasing the circularity of the economy is a necessary condition for enhancing so-
cial welfare in a growing economy. Overall, the dissertation presents a comprehensive examination of
the broad economic impacts of autonomous technologies, while introducing the concept of the circular
economy into macroeconomic modelling. The findings have important implications for policy-making,
contributing to a better understanding of the technology-driven economic changes.
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Abstract in Spanish

Esta tesis ofrece un análisis exhaustivo de las amplias implicaciones económicas y las consecuencias en
el mercado laboral de las tecnologías autónomas, considerando también el papel de la economía circu-
lar en el sostenimiento del crecimiento económico. Abarcando tres áreas temáticas a lo largo de nueve
ensayos independientes, la investigación proporciona una combinación de modelado macroeconómico
y evidencia microeconómica. La tesis se divide en tres partes principales, dejando a un lado la introduc-
ción y las conclusiones finales. La primera parte se centra en el modelado teórico macroeconómico de
una economía dual tradicional-autónoma, utilizando modelos de equilibrio general dinámico para eval-
uar el impacto de las tecnologías autónomas en la economía. La segunda parte proporciona evidencia
microeconómica sobre la influencia de las tecnologías autónomas en los mercados laborales. Finalmente,
la tercera parte presenta una nueva perspectiva sobre la integración de los conceptos de economía cir-
cular en un modelo neoclásico de equilibrio general dinámico. La tesis inicia su exploración a través del
lente de un modelo de economía dual tradicional-autónoma para estudiar las implicaciones económicas
de la automatización, descubriendo que los efectos están determinados en gran medida por la tasa de
adopción del capital autónomo y su elasticidad de sustitución con la tecnología tradicional. Un hal-
lazgo significativo sugiere la existencia de un umbral de tasa de adopción, más allá del cual el proceso
de automatización puede llevar a un cambio total desde el capital y el trabajo tradicionales. Además,
el estudio revela la necesidad de una profunda reforma de los sistemas fiscales actuales al observar
una reducción en el tamaño del gobierno debido a la sustitución de los insumos tradicionales sujetos
a impuestos con tecnología autónoma. Una exploración más profunda en la política fiscal óptima para
mantener la proporción de contribuciones a la seguridad social respecto al PIB mediante la imposición
de impuestos al capital autónomo sugiere que un impuesto a la seguridad social de los robots pagado
por los empleadores de capital autónomo es la estrategia a largo plazo más eficiente. La tesis luego se
enfoca en proporcionar evidencia microeconómica, examinando el impacto de la digitalización en los
mercados laborales, utilizando datos de los EE. UU. y países europeos. La investigación proporciona
una visión de los efectos de la digitalización en el panorama laboral de los EE. UU., presentando mapeos
que clasifican las ocupaciones según su relación con la automatización y la IA. El estudio también inves-
tiga las implicaciones del proceso de automatización y la IA en las decisiones de jubilación anticipada
en 26 países europeos, revelando un papel significativo del cambio tecnológico en estas decisiones.
Además, esta parte analiza el papel de la informatización, la IA, el aprendizaje automático y la capaci-
dad de reorganización ocupacional en las probabilidades de desempleo entre los trabajadores mayores,
indicando la heterogeneidad en el impacto de las nuevas tecnologías en el mercado laboral. Finalmente,
esta sección explora las implicaciones de la digitalización para la movilidad de los trabajadores, ilus-
trando una influencia significativa en la reubicación de los trabajadores desplazados. Finalmente, la
tesis presenta una nueva descripción matemática de una economía circular al incorporar el concepto en
un modelo lineal de economía de equilibrio general dinámico neoclásico. El estudio revela una relación
en forma de S positiva entre la tasa óptima de reciclaje y el desarrollo económico, concluyendo que au-
mentar la circularidad de la economía es una condición necesaria para mejorar el bienestar social en una
economía en crecimiento. En general, la tesis presenta un examen exhaustivo de los amplios impactos
económicos de las tecnologías autónomas, introduciendo el concepto de economía circular en el mode-
lado macroeconómico. Los hallazgos tienen importantes implicaciones para la formulación de políticas,
contribuyendo a una mejor comprensión de los cambios económicos impulsados por la tecnología.
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Preface

This thesis investigates the technological change of the Fourth Industrial Revolution and proposes a
circular general equilibrium model that breaks away from the linear modelling paradigm of the econ-
omy. The first part of the thesis analyses the technological change encompassed by autonomous capital
using general equilibrium models to gain a comprehensive view of the potential economic impact of
autonomous technology. The second part of the thesis employs microeconometric analysis techniques
to examine the specific impact of digitalization on various aspects of the labour market. Finally, the cir-
cular economy model is presented and the main conclusions of the thesis are summarised, along with
avenues for future research.

The journey culminating in the realisation of this doctoral thesis began years ago when my interest
in research naturally emerged while I was still a child. From my childhood, I began to be curious about
seemingly trivial matters such as the origins of buildings and cars. At that time, I could not even suspect
that I was becoming interested in economic growth and technological progress. In my adolescence, I
conducted my first research on econophysics at the high-school out of pure interest, long before I even
considered that what I was doing was research.

While pursuing my university studies at the University of Málaga, I was fortunate to meet Prof.
José L. Torres in the Advanced Macroeconomics course, who guided and educated me in the art of
research. During the academic year 2016/2017, I had the good fortune to participate in a university
extension course at the Department of Economic Theory and History, aimed at an advanced group of
the university for the extension of knowledge in several branches of economics and the introduction to
research.

My participation in this university extension course allowed me to learn more about how the depart-
ment’s professors conducted their research and guaranteed me the opportunity to undertake curricular
internships at the department. Undertaking these internships and my Final Degree Project under the
supervision of Professor Torres was of great help in learning more about the university. The seed of
this thesis was born with my Final Degree Project titled "Qualified and Unqualified Life in the Fourth
Industrial Revolution: A Dynamic General Equilibrium Analysis".

Given my interest in academic life, Prof. José L. Torres recommended that I enrol in the Master’s
programme in Economics, Business, Finance and Computing, jointly offered by the International Uni-
versity of Andalusia and the University of Huelva. My Master’s thesis consisted of an expansion and
refinement of my Final Degree Project, again under the supervision of Professor Torres. In this master’s
programme, I was fortunate to meet Prof. Concepción Román in the Microeconomic Analysis course.
Since then, Professor Román has been willing to introduce me to microeconometric research, welcoming
me to the University of Huelva as the supervisor of my doctoral thesis.

This thesis was carried out while working as a research assistant at the University of Huelva and
studying a bachelor’s degree in Mathematics at the Spanish Distance University. My work as a research
assistant at the University of Huelva was firstly carried out under the grant PEJ2018-003473-A during
the first two years of the thesis, and subsequently within the project PID2020-115183RB-C22 and as a
Temporary Substitute Professor in the Department of Economics.

I cannot be more grateful to my thesis supervisors for having supported me for years and accompa-
nied me on this journey, mentoring me in the art of research and university life. I have been fortunate
that two great individuals, two researchers whom I deeply admire, have been willing to share their time
with me and allow me to learn from them. I could not have had better mentors.

Universidad Internacional de Andalucía, 2023



Universidad Internacional de Andalucía, 2023



1

Part I

Introduction

Universidad Internacional de Andalucía, 2023



Universidad Internacional de Andalucía, 2023



3

Chapter 1

Introduction

The literature on automation has been growing rapidly in recent years, with a wide debate about its
economic implications (Hanson, 2008; Brynjolfsson and McAfee, 2014; Nordhaus, 2017). The main focus
has been on how technological progress will affect labour and labour income, with authors differing
in their views on whether complementarity or substitution effects will dominate. Pessimistic visions
argue for a decline in employment and labour income (Frey and Osborne, 2017), while more optimistic
views emphasize positive impacts on labour. However, the literature has generally overlooked the
change in capital composition, assuming new capital is equivalent to old capital, and focusing mostly
on robots as substitutes for workers, rather than considering their impact on traditional capital assets.
This changing composition of capital in the face of automation is a significant blind spot in the literature.
New technologies are not only replacing human labour, but they are also substituting traditional capital
assets, which have historically been complementary to labour. This nuanced understanding of the role
of automation in the economy is crucial for framing future research and policy discussions.

With advances in AI and robotics raising concerns about the economic implications of the fourth in-
dustrial revolution for human labour and income distribution, a number of studies have discussed the
necessity of controlling and regulating disruptive technology to protect workers and ensure economic
stability (Acemoglu and Restrepo, 2020; Korinek and Stiglitz, 2021; Fernández-Macías et al., 2021; Au-
tor, 2015; Graetz and Michaels, 2018; Klenert et al., 2022; Acemoglu and Restrepo, 2018). Taxing robots
has been proposed as a way to delay or discourage automation, obtain additional public revenues for
displaced workers, and sustain the social security system (Woirol, 2018; Jimeno, 2019; Basso and Jimeno,
2019; Hoynes and Rothstein, 2019; Cabrales et al., 2020; Jaimovich et al., 2021). The literature on robot
taxation is vast, exploring various aspects such as the optimal robot tax rate (Guerreiro et al., 2022; Ver-
muelen et al., 2020; Thuemmel, 2022; Zhang, 2019; Gasteiger and Prettner, 2022) and the challenges and
consequences of implementing such taxes (Mazur, 2019; Marwala, 2018; Chekina et al., 2018; Costinot
and Werning, 2018; Kovacev, 2020; Oberson, 2019). However, literature lacks on studies examining the
interactions between tax systems and the rise of AI and robotics.

The literature emphasizes that demographic changes and technological shifts interact in complex
ways. Lower population growth and population ageing may increase automation, leading to detri-
mental effects on economic growth in the medium run (Basso and Jimeno, 2021). Pay-as-you-go social
security systems face challenges due to demographic shifts and technological innovations driven by
automation (Kitao, 2014; Acemoglu and Restrepo, 2022; Basso and Jimeno, 2021). The literature has
highlighted the unsustainability of current social security systems, necessitating the restoration of bal-
ance through reducing benefits or raising taxes (Kitao, 2014). Moreover, the current tax system has been
argued to favor the substitution of labour for capital, incentivizing automation by providing preferential
tax treatment for robot workers (Abbott and Bogenschneider, 2018; Huettinger and Boyd, 2020; Soled
and Thomas, 2018; Mazur, 2019; Acemoglu and Restrepo, 2019; Acemoglu et al., 2020). There is a press-
ing need for rigorous research and comprehensive theoretical analyses of the potential taxation of new
technologies. Empirical work by Zhang (2019), Thuemmel (2022), and Gasteiger and Prettner (2022) has
begun to explore the implications of robot taxes, but more research is needed to understand how these
policies could influence income inequality, economic growth, and social welfare in the face of the rapid
advancements in automation and AI technologies.
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The rapid advancements in AI and robotics have begun to outperform even high-skilled human
workers in cognitive and creative tasks, which has sparked a debate on the need for regulation to pro-
tect economic stability and workers’ livelihoods. The Fourth Industrial Revolution, marked by rapid ad-
vancements in technologies such as Artificial Intelligence (AI), Machine Learning (ML), and Robotics,
has the potential to bring about significant changes in labour markets worldwide. This technological
change presents unique challenges for older workers and policymakers, particularly in the context of an
aging population in industrialized countries. The significant transformation of labour markets across
the world is a direct consequence of the rapid evolution of digital technologies. The profound impact
of this digital revolution on various occupations and workforce dynamics has been a prominent area of
study in recent years. The two key aspects of digitalization that have been central to these discussions
are its destructive and transformative sides, which have disparate impacts on the labour market.

The labour market impact of digital technologies such as AI and ML has been extensively studied,
with Tolan et al. (2021) highlighting that jobs previously thought safe from automation might now be
at risk due to increased AI exposure. Similarly, Frey and Osborne (2017) suggest that almost half of US
jobs are at high risk of computerization, a trend echoed in Portugal’s manufacturing sector (Duarte et
al., 2019). However, AI’s potential is not limited to job displacement. Recent literature has highlighted
its labour-friendly side, with studies documenting a surge in AI-related job vacancies and an increased
demand for AI skills in the US economy (Acemoglu et al., 2022; Alekseeva et al., 2021). Furthermore, the
emergence of AI has not led to any discernible negative impact on employment or wages, suggesting
that it could complement rather than replace human work (Tschang and Almirall 2021).

The macroeconomic implications of technological change are subject to considerable uncertainty (Ji-
meno, 2019). Key questions include the extent to which machines and human labour will complement
or substitute each other, the speed at which tasks currently performed by humans could be automated,
and the rate of new task creation. Although some authors emphasize the destructive impact of au-
tomation on employment (Frey and Osborne, 2017; Acemoglu and Restrepo, 2020a), others highlight its
potential to increase productivity (Graetz and Michaels, 2018) and create new jobs (Damioli et al., 2023).
The debate between these opposing views is ongoing.

The labour-saving potential of these technologies has led to concerns about job displacement, espe-
cially for certain vulnerable groups such as older workers nearing retirement age (Alcover et al., 2021;
Autor, 2015). Simultaneously, the increasing life expectancy and financial pressures on public finances
have prompted governments to extend statutory retirement ages and implement more restrictive early
retirement policies (European Commission, 2021). This creates a potential contradiction as governments
strive to extend working lives while technological changes threaten to displace older workers.

Older workers have been found to experience greater difficulty adapting to technological progress,
and this competitive disadvantage has led to a relative deterioration of their job prospects (Schmid-
peter and Winter-Ebmer, 2021). The term "digital ageism" has emerged to describe the challenges faced
by older people navigating the digital sphere and using online services (Manor and Herscovici, 2021).
Moreover, high-skill occupations, which are more likely to be held by older workers, are most exposed
to AI, indicating that this age group is at particular risk of displacement (Webb, 2020). In light of these
complex and interrelated challenges, this thesis also aims to provide a comprehensive analysis of the
impact of new technologies on older workers, focusing on the implications of automation, AI, and ML
for early retirement decisions, unemployment, and labour market outcomes. By examining the current
state of knowledge and synthesizing insights from the existing literature, this research seeks to inform
policy debates and contribute to a deeper understanding of the effects of technological change on the
lives and careers of older workers.

The digital revolution, marked by the rise of AI and digital technologies, is reshaping the labour
market, with both destructive and transformative impacts. The extent to which these technologies will
displace or create jobs remains a contentious issue, but the potential for transformation and growth
is undeniable. Therefore, the study of these trends and impacts is vital for informed decision-making
related to workforce development, policy planning, and economic growth. These insights will help us
navigate the evolving landscape of the labour market, preparing us for the opportunities and challenges
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that come with the ongoing digital revolution. It is crucial to further our understanding of the interplay
between digital technologies and labour dynamics, to optimize the benefits and mitigate the risks. As we
move forward, striking a balance between the destructive and transformative aspects of digitalization
will be key to fostering a resilient and inclusive labour market.

At the same time, technological progress and the circular economy are closely intertwined. As we
strive to create a more sustainable future, the synergy between technological innovation and circular
principles will be a key driving force. However, it is important to note that technology alone is not a
silver bullet – transitioning to a circular economy also requires changes in policy, business practices, and
consumer behaviour. The relationship between technological progress and the circular economy is one
of mutual reinforcement. As we grapple with the challenges of resource depletion, climate change, and
environmental degradation, it is becoming increasingly clear that the transition to a circular economy –
a model that emphasizes the reduction, reuse, and recycling of materials – is a necessity.

Digital technologies such as the Internet of Things (IoT), blockchain, big data, and artificial intel-
ligence (AI) can greatly enhance resource efficiency, traceability, and transparency in supply chains.
For instance, IoT devices can monitor and optimize the use of resources in real-time, while blockchain
can ensure the integrity and traceability of recycled materials. Technologies such as 3D printing and
modular design can support the principles of the circular economy by enabling localized production,
customization, and easy disassembly for repair or recycling. On the flip side, the circular economy
also drives technological innovation. The necessity to ’close the loop’ and create less wasteful systems
presents numerous challenges that require innovative solutions. These range from designing products
for longevity, creating new business models such as product-as-a-service, to developing novel materials
that are eco-friendly and easily recyclable. The move towards a circular economy also spurs innovation
by creating new markets and opportunities. Companies that are able to leverage technology to create
circular solutions can gain a competitive edge, while also contributing to environmental sustainability.

In traditional economic thinking, economic growth has often been associated with the linear model
of "take-make-dispose," which relies on the continuous extraction and consumption of natural resources.
However, the limits of this model are becoming increasingly apparent as we face resource depletion,
environmental degradation, and climate change. The circular economy offers a promising alternative
that decouples economic growth from resource consumption, promoting sustainability while still sup-
porting economic development. Indeed, the focus of traditional economic thinking has been on the
maximization of utility and profit, primarily driven by the consumption and production of goods and
services. This linear economic model has served us well in terms of economic growth and development
for centuries. However, its environmental implications have increasingly become a cause for concern,
with the depletion of natural resources and increasing waste generation threatening the sustainability
of our economies and the health of our planet.

Overall, integrating the circular economy into our existing linear economy is a complex task that
requires a fundamental shift in our economic thinking and practices. Despite the challenges, it presents
a unique opportunity to achieve a sustainable, resilient, and prosperous future. Moreover, the inclusion
of the circular economy in macroeconomic analysis can provide valuable insights into the economic
benefits and trade-offs associated with the transition to a circular economy. It can also help identify the
drivers and barriers to this transition, thereby informing effective policies and strategies for promoting
the circular economy.

1.1 Contributions of this thesis

The contributions of this thesis in relation to previous work focus on providing new insights into the
impact of autonomous technologies on the economy in general (Part II) and on the labour market in
particular (Part III), as well as offering a fresh perspective on the economy considering the growing
need to break away from the unsustainable linear economic paradigm towards a sustainable circular
economy (Part IV).
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Part II offers a macroeconomic perspective of the economic impact of autonomous technology on the
economy. Specifically, Chapter 2 contributes to the literature by introducing an unconventional produc-
tion function where two different and alternative technologies can be used for final output: a traditional
technology, where a combination of traditional capital and labor is used, and a new technology where
only automatic capital is needed for production. As a logical continuation of Chapter 2, Chapter 3 con-
tributes to the literature by analyzing how public finance evolves with the expansion in the economy of
the new disruptive autonomous technology. In particular, we examine how total tax revenues, including
social security contributions, evolves with automation in the long-run. Finally, Chapter 4 contributes to
the literature by exploring the most efficient alternative to tax autonomous capital in order to sustain the
social security contributions to output ratio. Specifically, we consider three alternative schemes -taxing
robot income, taxing robot investment, and taxing robots as humans- finding that taxing robots as hu-
mans is the alternative causing less disruptions in the economy. In addition, we analyze the implications
of autonomous capital taxation for the functional distribution of income. To the best of our knowledge,
this is the first rigorous contribution considering the autonomous capital taxation as a cantilever for
social security in a general equilibrium analysis framework. Previously, literature has considered, sepa-
rately and briefly, alternative policies for social security sustainability and alternative implementations
of autonomous capital taxation.

Part III of this thesis focuses on the analysis of various aspects of the labour market, taking into ac-
count the impact of the conglomerate of autonomous technologies labelled as digitalization. Specifically,
Chapter 5 is a descriptive exercise classifying occupations according to the current impact of digitaliza-
tion and future impact expectations. The classifications presented in this chapter are used to analyse
the impact of destructive digitalization on early retirement (Chapter 6), as well as to analyse the im-
pact of transformative digitalization on early retirement (Chapter 7) and to examine the implications of
digitalization for labour mobility (Chapter 9). Meanwhile, Chapter 8 analyses the impact of computer-
isation and AI, as well as their interaction (Machine Learning), on the transitions to unemployment of
older workers. Regarding geographical coverage, Chapter 5 considers employment in the United States,
while Chapters 6, 7, and 8 use data from Europe, and Chapter 9 focuses on the Portuguese labour mar-
ket.

Delving a bit deeper into the specification of the contributions of the third part of the thesis, we
can begin by stating that Chapter 5 contributes to the literature by presenting seven novel mappings
of the US employment landscape in relation to the digitalization process. Our approach combines both
backward-looking and forward-looking measures, capturing the current state of digitalization and the
potential future effects on occupations. Chapter 6 contributes to the literature by analysing the implica-
tions of the automation process for the early retirement transitions in 26 European countries. Chapter 7
contributes to the literature by providing new insights to the collision of technological and demographic
change by analyzing the effect of AI on the ER decisions in Europe. In order to develop our analysis, we
use microdata from the Survey of Health, Ageing and Retirement in Europe (SHARE), a measure of AI
advances (Felten et al., 2018) and a measure of AI exposure (Felten et al., 2021). In addition, considering
both AI advances and AI exposure we proportionate a new technological classification of occupations
in 4 Intelligence terrains (I-terrains). Chapter 8 contributes to the literature by presenting a threefold
novelty: (i) analysing the impact of new technologies in the unemployment among older workers in Eu-
rope, (ii) considering the impact of AI in unemployment, and (iii) measuring the concrete effect of ML
in unemployment Finally, Chapter 9 contributes to the literature by studying labor mobility between oc-
cupations at different digitalization exposure levels, and how worker, firm and industry characteristics
intervene in such moves. Specifically, we analyze how workers displaced from a job after firm closure
move between occupations differently impacted by computerization and artificial intelligence in the
Portuguese economy. While the potential for digitalization to create and destroy jobs by making certain
skills obsolete while promoting others has been the object of a variety of studies, worker mobility across
the digitalization terrains is relatively unaddressed in the literature.

Finally, Part IV of this thesis focuses on capturing the macroeconomic model of the circular economy.
Specifically, Chapter 10 contributes to the literature by developing a standard neoclassical Dynamic
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General Equilibrium (DGE) model extended by the incorporation of the CE. We depart from previous
analyses in ecological economics or industrial ecology, and we use the tools of traditional mainstream
neoclassical economics analysis as a prism to offer a new perspective on the CE. The chapter has a
twofold purpose. First, we intend to study the economic and environmental implications of the CE from
a macroeconomic point of view. Second, we aim to show that traditional neoclassical linear economic
models can be transformed and used to study the CE to achieve a better understanding of this issue.

1.2 Chapter overview

This thesis consists of nine self-contained essays structured as follows. It mainly consists of three parts
leaving aside this introduction and the concluding remarks.

Part II collects three essays considering the modeling of a dual traditional-autonomous economy
using DSGE models. We refer to automation technologies independently as automatic technology and
autonomous technology.

Chapter 2 studies the economic implications of automation, considering that automation is affected
by disruptive technologies which entail a structural change consisting in the introduction of a new phys-
ical capital input (a combination of artificial intelligence and autonomous robots), additional to ‘tradi-
tional’ capital assets and labor. This new ‘automatic’ physical capital is assumed to carry out production
activities without the need to be combined with labor. A simple production function combining both
traditional and new technologies is proposed, showing that the consequences of automation depend
on the combination of the automatic capital adoption rate and the elasticity of substitution between
traditional and automatic technology. We find out that, if the adoption rate is below a threshold that
matches the marginal productivity of automatic capital, little effects are derived from automation, inde-
pendently of the elasticity of substitution. However, if the automatic capital adoption rate is above the
threshold level and the elasticity of substitution is higher enough, the automation process can lead to
a robocalypse scenario with a total shift of both traditional capital and labor. We estimate, through the
benchmark calibration of the model, that the adoption rate threshold for automatic capital is about 22.5

Chapter 3 explores the consequences of automation for public finance. We find that as the automa-
tion rate increases, the government size, measured as the fiscal revenues to output ratio, declines due
to the substitution of traditional inputs which bear the burden of taxes by the new automatic technol-
ogy. These results are explained by the effects of automation on labor, where taxation of labor income
(including social security contributions) represents the most important source of fiscal revenues in most
advanced economies. The paper performs two additional counterfactual experiments. First, we calcu-
late how individual tax rates should be changed in response to automation in order to keep constant
fiscal revenues from the different sources of taxes. However, this experiment reveals that this fiscal pol-
icy would have significant harmful effects on output and labor, and that a deep reform of the current tax
mix is compulsory to offset the effects of automation on public finance. Second, we calculate the tax rate
on capital, without modifying the other tax rates, required to keep constant the size of the government,
resulting in a capital income tax rate of around 0.77 for an automation rate of 45%.

Chapter 4 analyzes the optimal tax policy to sustain the social security contributions to GDP ratio
constant by taxing autonomous capital. We explore three alternative ways of autonomous capital taxa-
tion -an autonomous capital income tax, a VAT on autonomous capital investment and a social security
tax supported by employers of autonomous capital- under two technological specifications -a frame-
work in which the autonomous technology replaces the traditional capital and labor and a framework
in which the autonomous capital replaces labor while complementing traditional capital. We calcu-
late the optimal tax rates to sustain social security size under the three alternative schemes and both
technological specifications, finding that these optimal tax rates do not rely on the substitution degree
between autonomous and traditional technologies. Both technological specifications indicate that, in
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the long-run, the robots’ social security tax paid by employers of autonomous capital is the more effi-
cient alternative to implement a specific taxation to autonomous capital. Additionally, we analyze the
implications of specific autonomous capital taxation for the functional distribution of income.

Part III includes five self-contained essays providing microeconomic evidence targeting the impact
of autonomous technologies in the labour market.

Chapter 5 presents seven mappings of the US employment regarding the digitalization process. In
order to develop our mappings, we use two destructive digitalization measures -automation degree
and computerization probability- and two transformative digitalization measures -AI advances and AI
exposure-. Therefore, we consider both a backward-looking and a forward-looking measure at each dig-
italization side. First, we construct typological mappings for each digitalization side: the automation
terrains classify occupations in 4 groups according to the current automation degree and the future com-
puterization probability (destructive digitalization), while the intelligence terrains divide occupations in
four groups according to the AI advances and AI exposure (transformative digitalization). Second, we
construct two occupational terrains classifications considering the interactions between destructive and
transformative effects of digitalization from two time perspectives: the backward-looking occupational
terrains collect the current state of digitalization respect to automation degree and AI advances, and the
forward-looking occupational terrains collect the expectations about digitalization affectations by con-
sidering computerization probability and AI exposure. Third, we propose three extended occupational
terrains considering different time perspectives at each digitalization side.

Chapter 6 measures the implications of the automation process in the labour market for the early
retirement decisions in 26 European countries. In order to perform the analysis, we use microdata from
the Survey of Health, Ageing and Retirement in Europe, occupation-level data on automation degree
and automation risk and a technological classification of occupations in 4 terrains. We find that the
current technological change is playing a significant role in the early retirement decisions, although it
affects heterogeneously certain groups in the sample (regarding gender, education level and job status).
This fact leads to a contradiction between governments trying to delay retirement ages and labour mar-
kets trying to expel workers earlier. Therefore, we conclude that, in order to elaborate policies on ageing
and retirement, the effect of new labour-saving technologies in older worker’s decisions must be taken
into account. We propose that the delay in statutory retirement ages should be accompanied by training
programs and/or policies promoting self-employment for workers at risk of ending their working lives
prematurely. Furthermore, the programs aimed to relocate middle-age workers displaced from their
original occupations should focus on finding a new occupation among those which are less affected by
automation processes.

Chapter 7 analyzes the impact of Artificial Intelligence (AI) in the early retirement (ER) decisions
in Europe. In a first stage of our analysis, we use a measure for AI exposure as the main explana-
tory variable to conclude that expectations on future AI implementations play a relevant role in the ER
transitions in Europe. In the second stage of our analysis, we use as the main explanatory variable a
novel technological classification that divides the occupations in 4 Intelligence terrains depending on
their relation with AI: Human Intelligence terrain for occupations non highly affected by AI, Future AI
applications for occupations only affected by a high expectation of AI development, Narrow AI defini-
tion for occupations with high AI advances but low AI projections and Artificial Intelligence terrain for
occupations highly affected by both AI advances and exposure. We find that workers in occupations
with high level of AI advances and high expectations for the further implementation of this technology
in the future reduce significantly their probabilities of transiting to ER. When analyzing separately AI
advances and AI exposure, we find a significant reduction in the ER likelihood only for workers with
higher education. Finally, we highlight that AI may increase or decrease the ER probability depending
on the advances-exposure interaction.

Chapter 8 analyses the impact of computerization, AI, ML and occupational reorganization capac-
ity in the probability of unemployment among older workers in Europe. Using data from the Survey
of Health, Ageing and Retirement in Europe (SHARE), our results show that, while computerization,
and, separately, ML, significantly increase the probability of unemployment among older workers, AI
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advances and a higher reorganization capacity can significantly reduce it. This fact highlights the het-
erogeneity of the impact of new technologies on the labour market, since, while one of the fields of
the technological revolution (AI) can be shown labour-friendly, a subfield of this technology (ML), an
automation technology, can be proved labour-unfriendly. Furthermore, differentiated effects regard-
ing job status are found: employees are significantly pushed to unemployment by computerization
and ML, while being protected from unemployment by AI. Civil servants reduce significantly their un-
employment probabilities when experiencing higher AI advances and higher reorganization capacity.
Self-employed workers are significantly pushed to unemployment only by ML.

Chapter 9 explores the implications of digitalization for worker mobility. Using a Portuguese linked
employer-employee longitudinal dataset and a forward-looking occupational classification considering
predicted advances in destructive and transformative digitalization, we show that digitalization and
the rise of AI are likely to play a relevant role in the relocation of displaced workers. We find that
workers with college education, high skills, and experience working in knowledge-intensive sectors
are more likely to be relocated in a rising star occupation. Older workers are less likely to transition
across occupation types, while female workers are more likely to be impacted by both destructive and
transformative digitalization. Periods of non-employment are likely associated with skill depreciation,
making it less likely that a displaced worker will return to the same occupational terrain.

Part IV consists of one self-contained chapter presenting a mathematical description of a circular
economy considering a DSGE modeling framework.

Chapter 10 studies the economic implications of the circular economy and recycling activities from
a macroeconomic perspective. The paper incorporates the circular economy into an otherwise standard
neoclassical dynamic general equilibrium linear economy model, in which the production function de-
pends on capital, labor, and raw materials. Raw materials are a composite of natural resources (the
linear economy) and recycled material (the circular economy). Waste is a function of consumption but
can be incorporated back into production activities through recycling. We find the existence of a positive
S-shaped relationship between the optimal recycling rate and economic development, indicating that in-
creasing the circularity of the economy is a necessary condition to augment social welfare in a growing
economy. The optimal recycling rate depends positively on the pollution damage and waste content
of final consumption goods. Simulation of the model supports the existence of a steady-state Environ-
mental Kuznets Curve (EKC) relationship between the stock of waste and the output in the presence of
a circular economy. Finally, we find that while a permanent improvement in recycling technology has
positive effects on output, expanding the circularity of the economy, an increase in the cost of natural
material has harmful effects on output, increasing waste accumulation and reducing recycling.

Part V concludes the study with a last chapter containing some concluding remarks, highlighting
the limitations and outlining the future agenda.

1.3 Publications

Some chapters of this doctoral dissertation are based on research articles published in academic journals
or submitted to academic journals and/or presented at various conferences and workshops.

Chapters 2, 3 and 4 are works jointly developed with José L. Torres. Chapter 2 is published in
the journal Economics of Innovation and New Technology. Chapter 3 has been presented at the Sixth
International ASTRIL Conference, the 47th Symposium of the Spanish Economic Association, the XV
Labour Economics Meeting and the 19th edition of the Augustin Cournot Doctoral Days.

Chapter 5, a work jointly done with Hugo Castro-Silva and Concepción Román, has been presented
at the Sixth International ASTRIL Conference, the XV Labour Economics Meeting and the 42nd EBES
Conference.

Chapters 6, 7 and 8 are works jointly developed with Concepción Román. Chapter 6 is published in
The Journal of the Economics of Ageing. This chapter has been presented at the XIV Conference of the
Spanish Association of Labor Economics, the 37th Eurasia Business and Economics Society Conference,
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10th PhD-Student Workshop on Industrial and Public Economics, the 8th International Conference on
Opportunities and Challenges in Management, Economics, and Accounting, the 36th Annual Confer-
ence of the Italian Association of Labor Economists, the 23rd Review of Socio Economic Perspectives
Conference, the 5th International Academic Conference in the Masters International Research and De-
velopment Center and Global Community of Social Science and the VIII International Conference on
Applied Economics and Finance. Chapter 7 has been presented at the XV Labour Economics Meeting,
the 24th Applied Economics Meeting and the 39th EBES Conference. Chapter 8 has been presented at
the XV Labour Economics Meeting and the 24th Applied Economics Meeting.

Chapter 9, a work jointly done with Hugo Castro-Silva, Rui Baptista, Jolanda Hessels and Concep-
ción Román, has been presented at the Workshop of the SPILEF Research Project on new technologies,
ecoinnovation, and productivity.

Finally, Chapter 10, a work jointly done with Anelí Bongers, is published in the journal Ecological
Economics.
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Chapter 2

Automation, Automatic Capital Returns,
and the Functional Income Distribution

2.1 Introduction

To produce commuting services, a cab-car needs a cab-driver nowadays. Therefore, it is natural to spec-
ify an aggregate production function in which both physical capital and labor are required. Furthermore,
this production function is assumed to express some complementarity between both inputs. However,
current technological progress is characterized by the creation of a new type of capital (based on a com-
bination of computers, robotics, and artificial intelligence) that can perform production activities in an
autonomous way with minimal human intervention.1 This new "self-driving taxi" is a new type of cap-
ital equipment that can substitute both the traditional manual-driving cab and the human cab-driver,
and where commuting services can be produced using this new capital alone.2 In this chapter, we ar-
gue that this implies a structural change (a disruption) to the economy production technology, as a new
type of capital input is incorporated into production activities. Following standard definitions in the
literature (see, for instance, DeCanio, 2016), traditional capital is named just capital, whereas automatic
capital is referred as robots. This technological process will result in each particular sector producing a
final good using two different technologies. This action will depend on the potential automatic capital
adoption rate. The question here is whether it is possible for the two technologies to coexist simultane-
ously in the different sectors and the economy as a whole, or, by contrast, whether the new technology
will crowding-out the old one, generating the so-called robocalypse.

Literature on automation has been growing rapidly during the last decade. Nowadays, there is
a wide debate about the economic implications of the automation process although this is not a new
topic. The many different views in the literature about the social-economic implications of the same
technological change allow to clarify the difficulty of assessing the impact of this phenomenon and past
experiences regarding the introduction of new capital equipment. These considerations are of question-
able value given the uncertainties about technological progress and the possibility of the technological
singularity (Hanson, 2008; Brynjolfsson and McAfee, 2014; Nordhaus, 2017). The main focus have been
placed on how this new technological progress will affect labor and labor income. Authors differ in
which effect will dominate: complementarity or substitution. Pessimistic visions, adopting a Luddite
point of view, bet for an abruptly decline of employment and labor income (for example, Frey and Os-
borne, 2017) while other optimistic visions argue positive impacts for labor (for example, Ernst et al.,
2018). Nevertheless, the literature has not considered the change that has taken place in the composi-
tion of capital as the new capital is considered as equivalent to the old one. Indeed, the vast majority of

1Grace et al. (2018) report that Artificial Intelligence (AI) researchers predict a 50% of probability of robots outperforming all
human task by 2045 and substituting all human labor in 120 years. These predictions suggest that AI will outperform humans
in a number of activities in the next few decades, such as translating languages (by 2024), writing high-school essays (by 2026),
driving a truck (2027), working in retail (2031), writing a bestselling book (by 2049), and working as a surgeon (by 2053).

2See Jiang et al. (2015) for a discussion of the implications of the particular new disruptive capital asset (self-driving cars).
We take self-driving cars just as an example of the characteristics of the new automatic capital, but it can be extended to a
number of other production activities.

Universidad Internacional de Andalucía, 2023
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works on automation consider robots as substitutes for workers, forgetting that they will also replace
traditional capital assets which are complement of labor.3

Many authors have remarked the current elimination potential of labor-intensive tasks and cognitive
demanding tasks (Brynjolfsson and McAfee, 2014; Ford, 2015). Within this stream of thought, Frey and
Osborne (2017) argued that 47% of US employment would have been automated by 2033. However,
nowadays, even these authors do not support those results (Frey, 2019). Using the same methodol-
ogy, Bowles (2014) calculated that 54% of European jobs are in high risk of computerization. Other
voices claimed that an increase in the robots to workers ratio reduces the employment to population
ratio and the wages (Acemoglu and Restrepo, 2019). Chiacchio, Petropoulos and Pichler (2018) use
the same methodology to examine the effect of industrial robots in six European countries. Autor and
Salomons (2018) also follow this approach to analyze automation in 18 developed countries of the Eu-
ropean Union, Australia, Japan, South Korea, and the United States. These authors support Acemoglu
and Restrepo (2020a) results. Schlog and Sumner (2018) focus on the effect of automation for workers in
developing countries and their battle against what they call the "Robot Reserve Army".4

Nevertheless, other scholars highlight that many voices have been raised to highlight the creation
of new tasks with technological progress and deny the results obtained by other authors. In this sense,
Arntz et al. (2016, 2017) repeated the analysis of Frey and Osborne (2017) focusing on tasks instead of
occupations to conclude that only 9% of US occupations are potentially automatable. Dauth et al. (2017)
replicate the empirical work of Acemoglu and Restrepo (2020a) for the case of Germany, not finding a
negative effect of robots because other sectors have absorbed the employment lost in the manufacturing
industry. Bessen (2017) finds that computer technology is associated with job creation, and Graetz and
Michaels (2018) affirm that robots are contributing to labor productivity growth since decades ago. Ernst
et al. (2018) describe these opportunities regarding the increase in productivity, especially among low-
skilled workers due to the tremendously reduced costs of capital. Anwar and Graham (2020) focus
on the effects of digital technologies on African workers through the creation of low-skill jobs such as
image and video annotation tasks, that require little skills. Furman and Seamans (2018) welcome the
potential of AI for increased productivity growth and, at the same time, they propose some alternative
policies to mitigate AI-induced labor disruptions (universal basic income, employment subsidies and
guaranteed employment). Acemoglu and Restrepo (2018d) emphasize, in a theoretical model, the labor
market adjustment against automation: other sectors can reinstate labor that is not needed anymore in
certain activities that are now performed by robots.5

The literature had adopted alternative approaches to dealing with the emergence of these new capi-
tal assets. An earlier attempt is Zeira (1998), which analyses the growth of the technological innovations
that reduces labor requirements but raise capital requirements. Sachs and Kotlikoff (2012) present an
overlapping generations (OLG) model in which smart machines substitute directly young unskilled

3Acemoglu and Restrepo (2018c) collect and review various ways of modeling automation. Among them are the options to
interpret this economic process as capital-augmentating or labor-augmentating technological change. Acemoglu and Restrepo
(2020) offer a deep thorough vision of automation effects. Jimeno (2019) questions that robotisation and AI have the same
economic implications of factor-augmenting technological progress.

4Estimated percentage of tasks that can be automated using the current technology in each country have been carried out
by Manyika et al. (2017). Their estimations suggest that the potential automatic capital adoption rate is above the 45% in every
industrialized economy in the world, and that technical automation potential is concentrated in countries with the largest
populations and/or high wages.

5The World Economic Forum (2018) foresees that automation will eliminate 75 million jobs across the planet by 2025, but
will create 133 million newtasks. However, the fact that the capital associated to these employees will be also replaced by new
technological devices is a fact that often goes unnoticed, causing us to have a partial vision of the technological change that the
economy is experiencing. A computer programming device powered by AI is, of course, more productive than a programmer.
The question is whether this device powered by AI is more productive than this programmer and his computer working
together. If it turns out that the device powered by AI possesses a larger productivity than the worker and his associated unit
of capital, this device will replace both. Thus, where we used to have a worker working with a unit of capital, we will have
now a single unit of AI-powered robotic capital .
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workers. At the same time, these machines also complement older skilled employees.6 Sach et al. (2015)
contrast a robotic firm in which the only input are robots with a traditional firm with machines and
labor, in a form similar to our approach. Benzell et al. (2017) introduce automation to represent an
economy where robots are a combination of code and capital and where the code is produced by high-
skilled workers, as well as both high-skilled and low-skilled workers are involved in the production
of services. Acemoglu and Restrepo (2018b) develop a model in which tasks previously performed by
labor can be automated but where new versions of existing tasks, in which labor has a comparative
advantage, can be created. Berg et al. (2018) explore different views about how automation may affect
the labor market, concretely they present four models reflecting diverse scenarios. In their first model,
robots compete against all labor in all tasks, while in the second model, robots compete only for some
tasks; the third model states that robots only substitute unskilled labor while complement skilled labor.
Finally, the fourth model reduces the robots contribution to production in just one sector. Lin and Weise
(2019) propose a similar model to the first one presented by Berg et al. (2018), in which robots constitute
a labor-replacing capital. They set-up a production function where traditional capital is a complement
of human labor and robot capital replaces human labor. Furthermore, they argue that the observed de-
cline in the labor share in the U.S. is a direct consequence of robotization. Nomaler and Verspagen (2020)
use a similar production functions for studying the implications of robotization and find that this new
technology may lead to the so-called perpetual growth. Here, we depart from the existing literature by
adopting a disruptive vision of automation.

This chapter contributes to the literature by introducing an unconventional production function
where two different and alternative technologies can be used for final output: a traditional technology,
where a combination of traditional capital and labor is used, and a new technology where only auto-
matic capital is needed for production. Traditional capital and labor are complementary and both are
substitutes of the new automatic capital. Mathematically, this is represented by a CES nested in another
CES function where constant return-to-scale are preserved. The aggregate technology includes two key
parameters: the elasticity of substitution of the automatic capital to the combination of traditional cap-
ital and labor. It also includes the distribution parameter for both technologies which is assumed to
represent the automation adoption rate. We consider that this technological function helps to a more ac-
curate representation of the fundamental characteristics of the incoming automation process, in which
traditional capital and labor are being replaced by a new autonomous input productive technology. Our
aggregate technology implies that, isolated, traditional technology uses inputs which have decreasing
returns. It is worthy to remark that the new technology presents constant returns (similar to an AK-
type technology). Indeed, endogenous growth is a particular case of our model, when only the new
technology is used for production (see, for instance, Aghion and Howitt, 1998; Acemoglu, 2009). In this
simple setting, endogenous growth can arise without the need to consider R&D activities or technologi-
cal knowledge. Therefore, the model presented here could be considered a simplified version of a more
complex model where R&D activities and monopolistic competition issues are considered (for growth
models with R&D activities, see Marchese and Privileggi, 2020, and the literature cited therein).

We simulate the model and compute steady states of the main macroeconomic variables for a range
of values for the elasticity of substitution between the new and the traditional technologies, as a func-
tion of the new automatic capital adoption rate. The automatic capital adoption rate is assumed to be
represented by the distribution parameter of the aggregate CES function. The main result of the chapter
consists in the finding of the existence of a threshold value for the automatic capital adoption rate. The
steady state of the economy for this threshold value does not depend on the elasticity of substitution
between new capital and traditional inputs, as the ratio of automatic capital to output is one. Moreover,
the threshold value for the adoption rate is equal to the marginal productivity of the new capital, which
is just a constant, and depends on the automatic capital depreciation rate and the discount factor. It is
also the baseline for the normalization of a family of CES functions when the elasticity of substitution

6Another branch of the literature on automation has focused on the relationship of this process with demography to analyze
possible consequences originated by the implementation of automation with ageing people. See, for instance, Basso and
Jimeno (2019).

Universidad Internacional de Andalucía, 2023



16 Chapter 2. Automation, Automatic Capital Returns, and the Functional Income Distribution

varies. For the benchmark calibration of the model, we find that this threshold value is about 22.5%.
For an adoption rate of the new technology below that threshold value, the consequences of automa-
tion for the economy are mostly negligible, no matter how the elasticity of substitution between both
technologies is. However, for an adoption rate above the threshold value, changes in the economy, as a
consequence of the incorporation of the new automatic capital, are dramatic and depends on the elas-
ticity of substitution between the two technologies. For a scenario with high elasticity of substitution
between traditional production technology and an adoption rate for new capital above the threshold,
we find an abrupt increase in the accumulation of the new capital and the output, as well as a sudden
reduction in labor. Based of these simulations, we identify two necessary conditions for the robocalypse
to occur: a high elasticity of substitution between the traditional and the automatic technology and an
automatic capital adoption rate above the threshold.

In addition, we find that the functional distribution of income is not significantly affected when the
adoption rate of new capital is below the threshold, although labor share slightly declines as the auto-
matic capital adoption rate increases. However, when the new capital adoption rate is above the thresh-
old and the elasticity of substitution between new capital and traditional technology is higher enough,
labor share suddenly declines collapsing into very low values as a consequence of an intense process of
labor substitution. When the net income is taken into account (see Karabarbounis and Neiman, 2014b,
and Bridgman, 2018) and both traditional and new capital have the same return net of depreciation, the
decline in labor share has a lower magnitude. Nevertheless, it is important to remark that it would col-
lapse for a high automatic capital adoption rate and a high elasticity of substitution between traditional
and automatic technologies, since these two conditions trigger the accumulation of automatic capital,
resulting in a huge amount of output.

For the sake of clarity, the rest of the chapter is organized as follows. Section 2 elaborates a simple
model with three inputs: labor, traditional capital and automatic capital, where the production tech-
nology is represented by a traditional CES function nested in another CES function. Section 3 presents
the calibration of the model economy. Simulations from the model are presented in Section 4, which
investigates the implications of the elasticity of substitution between the new capital and the traditional
technology and also the automatic capital adoption rate. Section 5 focuses on the consequences for the
functional distribution of income. Finally, section 6 derives the conclusions obtained from this research.

2.2 The model

Based on the predictions by AI researchers, the combination of AI and autonomous robots will create
new types of capital assets that can perform production activities with minimal human intervention and
where this new capital is expected to outperform all human tasks in the near future (Grace et al. 2018).
This will lead automation to a new stage, where investment in new equipment will introduce a new
technology that fully displaces labor in a number of tasks, contrary to more recently proposed models
in the literature in which automation results in the displacement of low-skilled workers and routine
tasks. Here we consider a model economy with two kinds of capital: K is the traditional capital and D
represents the new automatic capital (a combination of AI and robotics). We propose a simple produc-
tion function where two different technologies can coexist simultaneously: a traditional technology that
requires physical capital and labor for production and a new automatic technology that employs only
a new capital (hardware and artificial intelligence) for production. In order to get the model closer to
economics, we consider a representative household that can freely decide labor time, consumption and
investment decisions in both kinds of capital. Whereas traditional technology uses a combination of
traditional capital and labor under constant returns to scale (which implies that marginal productivity
for both inputs is decreasing), the new technology exhibits constant marginal productivity for automatic
capital, which involves endogenous growth. The model is specified in discrete time and it is considered
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a descentralized economy where households maximize utility in a deterministic intertemporal optimiza-
tion setting and firms operates in a perfect competition environment. Capital letters represent quantities
of aggregate variables.

2.2.1 Technology

The aggregate production technology is a CES function for traditional technology using capital and
labor nested into another CES function. In this function, new and traditional technology are substitutes.
We define the following aggregate production function to represent these technological combinations:

Yt = [µXυ
t + (1 − µ) Dt

υ]
1
υ (2.1)

where Yt is the final output, Xt represents traditional technology, µ is a distribution parameter for the
traditional productive factors versus the new technology, Dt is the automatic capital, and υ measures
the substitution between the traditional production technology and the new technology. The elasticity
of substitution between traditional and automatic technologies is defined as σ = 1/(1 − υ).

The traditional technology is represented by another CES function:

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(2.2)

where Kt is the traditional capital, Lt is labor, α is a distribution parameter of inputs and θ measures
the substitution between traditional capital and labor. The elasticity of substitution is defined as ε =
1/(1 − θ). Empirical evidence suggests that ε < 1 (Chirinko, 2008; Eden and Gaggl, 2018), and that
σ > 1 (DeCanio, 2016; Acemoglu and Restrepo, 2019; Lin and Weise, 2019). Therefore, it is assumed
that 0 < ε < 1 < σ < ∞. This implies higher complementarity between traditional capital and labor
than between traditional technology and the automatic capital. That is, automatic capital is a substitute
for both traditional capital and labor. With that specification, the elasticity of substitution between
automatic capital and traditional capital and between automatic capital and labor are both equal to σ
(the self-driving taxi substitute in the same proportion to both the taxi-driver and the non-self-driving
car). Note that when both elasticities of substitutions are one, the aggregate production function collapse
to a standard Cobb-Douglas production function with two capital assets, i.e., Yt = Kαµ

t D1−µ
t L(1−α)µ

t .
The key characteristic of that production function is that it embodies two different technologies

operating simultaneously, depending on the distribution parameter between traditional and automatic
technology. If µ = 1, the production function collapse to the standard CES production function with
physical capital and labor, where Yt = Xt. If µ = 0, this represents a technology with no labor and with
automatic capital as the only input, with constant returns, Yt = Dt. This specification seems reasonable
since we assume that robots and AI do not get tired. If µ is between 0 and 1, we would have a scenario in
which, presumably, not all human production activities can be substituted by the new automatic capital
and the aggregate technology would be a combination of the traditional CES nested in another CES
function with constant return to scale.7

7We can think about our production function in terms of the Hegelian dialectic. In the Hegelian dialectic there is always
a "thesis" and its opposite, an "antithesis", and both thesis and antithesis form a "synthesis". This dialectic was conceived by
Hegel as a process that is constantly repeated in life and which is perfect to study history in all its eras. In fact, Marx used
his historical materialism (based on the Hegelian dialectic) to study the evolution of productive systems throughout time.
There has been always a thesis, when an antithesis appears and confront the preexisting thesis. Thesis and antithesis come
together and form a synthesis, which become the thesis of the next stage. In this sense, regarding our production function, the
traditional productive system would be a thesis, the new automatic technology the antithesis and our production function the
synthesis of these two technologies. If µ = 1, the synthesis between these two technologies would be equal to the previous
thesis. On the contrary, if µ = 0, the synthesis would be an automatic economy without labor. For any other values of µ ∈ (0, 1)
we have a synthesis in which traditional and automatic technology coexist.
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Firms maximize profits in a competitive environment taken factor prices as given, solving the fol-
lowing static maximization problem at each period:

max Πt = Yt − WtLt − Rk,tKt − Rd,tDt (2.3)

From the first order conditions of the firm’s profit maximization problem, we obtain the following
marginal productivity of each of the three productive factors:

Rk,t = αµY1−υ
t Xυ−θ

t Kt
θ−1 (2.4)

Wt = (1 − α) µY1−υ
t Xυ−θ

t Lt
θ−1 (2.5)

Rd,t = (1 − µ)Y1−υ
t Dt

υ−1 (2.6)

where the Euler Theorem holds, profits are zero and output is distributed among the three productive
factors, given the assumptions of a competitive market and constant returns to scale. One of the main
concerns about automation is how this process will affect the functional distribution of income. From
the above first order conditions, we find out that the functional distribution of gross income for the three
factors resulting from our model economy is:

Sl,t =
WtLt

Yt
= (1 − α) µY−υ

t Xυ−θ
t Lt

θ (2.7)

Sk,t =
Rk,tKt

Yt
= αµY−υ

t Xυ−θ
t Kt

θ (2.8)

Sd,t =
Rd,tDt

Yt
= (1 − µ)Y−υ

t Dt
υ (2.9)

Notice that, at the point in which the stock of automatic capital is equal to output, the automatic
capital share is equal to the rate of return to these capital assets and to the automatic capital adoption
rate, represented by the distribution parameter 1 − µ. As we will demonstrate later, this point will be
key to assess the effects of automatic capital on the economy. Functional distribution of income at this
point is given by:

Sl,t = (1 − α)µ
Lθ

t

αKθ
t + (1 − α)Lθ

t
(2.10)

Sk,t = αµ
Kθ

t

αKθ
t + (1 − α)Lθ

t
(2.11)

Sd,t = Rd,t = (1 − µ) (2.12)

2.2.2 Households

To keep the model as simple as possible, we assume that the utility function of our representative house-
hold is as follows:

U(Ct, Lt) = γlog(Ct) + (1 − γ)log(1 − Lt) (2.13)

where Ct is total consumption and γ is a parameter reflecting the willingness to sacrifice units of con-
sumption in favor of leisure time. Total available time has been normalized to one, so leisure is defined
as 1 − Lt, where 0 ≤ Lt < 1. The representative household satisfies the following budget constraint:

Ct + Ik,t + Id,t = WtLt + Rk,tKt + Rd,tDt (2.14)

where Ik is the investment in traditional capital and Id is the investment in AI and robotics. Notice
that in this theoretical framework Euler Theorem holds, and hence, output equals national income, i.e.,
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Yt = WtLt + Rk,tKt + Rd,tDt. We assume that investment decisions are specific to each capital assets due
to the fact they have different characteristics. AI and robotics accumulation process would be presented
in the following way:

Dt+1 = (1 − δd)Dt + Id,t (2.15)

where 0 < δd < 1 is the depreciation rate of AI and robotics. Similarly, traditional capital accumulation
process is as follows:

Kt+1 = (1 − δk)Kt + Ik,t (2.16)

where 0 < δk < 1 is the traditional capital depreciation rate. Following recent literature (Prettner, 2019;
Nomaler and Verspagen, 2020), for the sake of simplicity, we assume a linear accumulation of both types
of capital, where the technology to produce both types of capital is already available in the economy,
without the need of a role for R&D activities, as in Marchese and Privileggi (2020). We assume that
depreciation rates are different, and, in particular, that δd > δk, which is equivalent to consider that the
production cost for automatic capital is higher than the traditional capital’s one. This implies that, in
equilibrium, the marginal productivity of automatic capital must be higher than the one corresponding
to traditional capital.

The maximization problem faced by the infinity-lived representative household with perfect-foresight
is given by,

max
{Ct,Lt}

∞

∑
t=0

βt [γlnCt + (1 − γ) ln(1 − Lt)] (2.17)

subject to restrictions (2.14), (2.15), and (2.16), where K0 and D0 are given, and where β is the intertem-
poral discount factor.

Equilibrium conditions, representing Euler equations, from the household’s maximization problem
are,

1 − γ

γ

Ct

1 − Lt
= Wt (2.18)

1 = β
Ct

Ct+1
(1 − δk + Rk,t+1) (2.19)

1 = β
Ct

Ct+1
(1 − δd + Rd,t+1) (2.20)

making reference to optimal labor supply, investment decision on traditional capital and investment de-
cision on automatic capital, respectively. These three equilibrium conditions together with the following
transversality conditions for each type of capital, where λt denotes the Lagrange’s multiplier associated
to the household maximization problem (i.e., the shadow price of consumption):

lim
t→∞

βtλtKt+1 = 0 (2.21)

lim
t→∞

βtλtDt+1 = 0 (2.22)

and initial conditions, fully characterize optimal trajectories for the variables in the long-run. Notice
that these equilibrium conditions establish a direct relationship between depreciation rates and returns
of both traditional and automatic capital, as net marginal productivities are equal, such as:

Rd − δd = Rk − δk (2.23)
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2.3 Calibration

The model is calibrated to an artificial economy where the two key parameters for studying the con-
sequences of automation by the introduction of the new technology are kept free.8 These parameters
represent the distribution parameter in the final production CES technology, µ, and the elasticity of
substitution between the automatic and the traditional technology, σ = 1/(1 − υ). Discount factor pa-
rameter, preference parameter, and technological parameters of the traditional technology are calibrated
using standard values in the literature. We fix β = 0.975, γ = 0.4, α = 0.35, ε = 1/(1 − θ) = 0.90 and
δk = 0.06, using an annual basis. We choose an elasticity of substitution lower than one between tra-
ditional capital and labor, consistent with Chirinko (2008), Eden and Gaggl (2018) and Lin and Weise
(2019).

The first key parameter of the model is the distribution parameter in the final production CES tech-
nology. We argue that this technological parameter can be interpreted as the adoption rate of the new
technology in relation to the traditional one, where the distribution parameter for the new technology
is 1 − µ, and where µ is the weight for the traditional technology in the aggregate CES function. This
adoption rate can be defined as the percentage of tasks in the production system assumed by automatic
technology.9 We choose a range of values for automatic capital adoption rates between 1% and 45%, so
we analyze feasible scenarios according to the estimations of the percentage of tasks that can be auto-
mated using current technology, up to the value reported by Manyika et al. (2017). This implies that in
the simulations of the model, the technological distribution parameter µ is in the range 0.55 - 0.99.

The second key parameter of the model is the elasticity of substitution between traditional tech-
nology and the automatic technology, σ. Robots and humans are assumed to have a high elasticity of
substitution, although there is a lack of estimations in literature.10 However, we should bear in mind
that our model does not collect implicitly the elasticity of substitution between humans and robots, but
an elasticity of substitution between the automatic capital and both labor and the traditional capital of
the same magnitude. The elasticity of substitution among automatic and traditional capital is even less
documented than the substitution effects between humans and robots. Our model estimates that, if a
robot replaces a human, it also substitutes the capital associated to this humans professional occupa-
tion. Consequently, the elasticity of substitution between automatic and traditional technology must be
related to the elasticity of substitution between humans and robots. For the elasticity of substitution
between the new automatic technology and the traditional technology, we explore the interval between
1 and 5, which implies that υ ∈ (0 : 0.8).

The automatic capital depreciation rate is an important additional parameter in our model economy
and in assessing the economic implications of automation. Depreciation rates are expected to largely
vary between the two types of capital assets in our model, where automatic capital is expected to have
a higher depreciation rate. Indeed, new technological devices such as computers, telecommunications
equipment and software have a higher depreciation rate than more traditional capital assets. Investment
in these types of capital assets has increased the total depreciation rate for total physical capital in the
economy. Automatic capital depreciation rate emerges as an important parameter driving the effects of
automation. First, it introduces a difference in the returns to both types of capital. Second, the automatic
capital depreciation rate is a key parameter for assessing the impact on the new technology on the
economy. Graetz and Michaels (2018) consider a robots depreciation rate of ten per cent. Abeliansky

8As we use the model to calculate steady states and not transition dynamics, the CES functions are not normalized in
the lines suggested by de La Grandville (1989). Nevertheless, the main results in the chapter indicate the basis for such
normalization in the case one is interested in computing transition dynamics for a family of CES functions when the elasticity
of substitution varies.

9According to Manyika et al. (2017), the percentage of tasks that can be automated using current technology is higher than
45% for industrialized countries. This "percentage of tasks that can be automated using current technology" would be the
empirical counterpart to our definition of automatic capital adoption rate.

10Lin and Weise (2019) states an elasticity of substitution of 5. Artuc, Bastos and Rijkers (2018) set it at 10. Acemoglu and
Restrepo (2020a) assume an infinite elasticity of substitution between humans and robots. DeCanio (2015) concludes that this
elasticity of substitution is for sure above 2.1.
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TABLE 2.1: Calibrated parameters

Parameter Definition Value
Preferences β Discount factor 0.975

γ Consumption-leisure preference parameter 0.40
Technology α Capital share in the traditional technology 0.35

δk Traditional capital depreciation rate 0.06
δd Automatic capital depreciation rate 0.20
ε Traditional capital-labor elasticity 0.90
σ Traditional-automatic technologies elasticity [1-5]
µ Technologies distribution parameter [0.55-0.99]

and Prettner (2017), following Graetz and Michaels (2018), also assume a robotic depreciation rate of
10%. This depreciation rate would be higher than the one established by the International Federation of
Robotics (2016), which sets a lifetime horizon of 12 years for robots. Lin and Weise (2019), along with
Krusell et al. (2000), set out a quarterly depreciation of robots at 0.0515. In our case, automatic capital
is assumed to represent the most advanced technology in the economy, and, therefore, we determine
δd = 0.20, according to the depreciation rate traditionally assumed for R&D capital. This percentage is
reflected in the EU KLEMS data and has been documented by numerous authors (see, for example, Hall,
2005). Table 2.1 summarizes the benchmark calibration of the parameters of the model and the range of
values for the two parameters under investigation.

Given the calibrated model, we investigate steady states resulting from combinations of different
values for the two key parameters: the elasticity of substitution among traditional and automatic tech-
nologies and the automatic capital adoption rate. This is why we solve the following system of 11
equations for eleven unknown quantities, (Y, C, K, D, X, L, W, Ik, Id, Rk, Rd), where variables without a
time index represent steady state values:

Rd =
1
β
− 1 + δd (2.24)

Rk =
1
β
− 1 + δk (2.25)

Id = δdD (2.26)

Ik = δkK (2.27)

W =
1 − γ

γ

C
1 − L

(2.28)

Y = [µ Xυ + (1 − µ) Dυ]
1
υ (2.29)

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(2.30)

C = Y − Id − Ik (2.31)

L =

[
Y1−υ (1 − α) µXυ−θ

W

] 1
1−θ

(2.32)

K =

[
Y1−υαµXυ−θ

Rk

] 1
1−θ

(2.33)
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D = Y
[
(1 − µ)

Rd

] 1
1−υ

(2.34)

The model satisfies the Blanchard-Kahn rank condition (Blanchard and Kahn, 1980), indicating that
the steady state is unique. Given that log-linearization of the equations of the model around the steady
state only ensures local stability, it is assumed that initial conditions (K0, D0) are in the neighborhood of
the steady state, such as any trajectory determined by the original non-linear Euler equations leads to
the steady state as t → ∞.11

2.4 Traditional versus automatic technology and the adoption rate

In this section, we explore the parametric space of the model economy and compute steady states de-
pending on the values of the two fundamental parameters of the proposed technology: the elasticity
of substitution between the traditional and the automatic technology, and the distribution parameter
representing automatic capital adoption rate. We present the results for four values of the elasticity of
substitution between traditional and automatic technology: 1, 1.5, 2 and 5.

We find a particular value for the automatic capital adoption rate for which any steady state value
depends on the elasticity of substitution between the traditional and the automatic technology. This
is equivalent to the baseline point for a family of normalized CES functions. This occurs because, in
this particular steady state, the ratio of automatic capital to output is one. This threshold value for the
adoption rate of automatic capital is just equal to the marginal productivity of this new type of capital
(1 − µ = Rd), which remains a constant and depends on the automatic capital depreciation rate and
the discount factor. For the benchmark calibration of the model we find that this threshold value is
about 22.5%. This value is essential for assessing the effects of automation on the main variables of the
economy. For an adoption rate of the new technology below that threshold value, the consequences of
automation are almost insignificant regardless of the elasticity of substitution between both technolo-
gies. However, for an adoption rate above the threshold value, changes in the economy provoked by the
new capital could be dramatic, depending on the elasticity of substitution between the two technologies.
Another property of the threshold is that the stock of automatic capital and the output level are equal at
this point, Y = D. Therefore, we can clearly identify which parameters influence the threshold, as it is
collected in equation (24).

The threshold point is equivalent to the baseline point for the normalization of a family of CES
functions for different elasticities of substitution. As shown by de La Grandville (2016), the distribution
parameter of a normalized CES function (interpreted here as the adoption rate of the automatic capital)
is the geometric mean of the capital share and the interest rate such as 1 − µ = S(1−υ)

d Rυ
d. In our model,

the baseline point for the normalization of the CES functions implies that the distribution parameter is
equal to the interest rate, and hence, in the threshold point the automatic capital share is equal to:

Sd = 1 − µ = Rd =
1
β
− 1 + δd (2.35)

Figure 2.1 plots the steady state values for output, labor, traditional capital, and automatic capital
as a function of the adoption rate of automatic capital and for the four selected values of the elasticities
of substitution. We find that, for the low values of the adoption rate of automatic capital, the new
technology has little effect on the main macroeconomic variables. As we observe in Figure 2.1, steady
state values of labor, output and automatic and traditional capital are almost the same for any elasticity
of substitution between the traditional and the automatic technology. At the threshold, steady state

11We thank one anonymous referee for notice us about this important stability issue. In solving the model, we used an eigen-
value/eigenvector decomposition method. This solution method requires that, for a nonlinear model, a linear approximation
must be obtained, and therefore, the stability conditions are approximate. As a consequence, steady state of the economy could
never be reached, given that the computed equilibrium only guarantees local stability.
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FIGURE 2.1: Steady state values for output, traditional capital, labor, and automatic capital
as function of the automatic capital adoption rate and the elasticity of substitution between

traditional technology and automatic technology.

values are the same for any elasticity of substitution since the family of CES functions for any value
of the elasticity of substitution intersect at this point. For values above the threshold, the elasticity of
substitution is crucial. For a scenario with high elasticity of substitution between traditional production
technology and an adoption rate for new capital far above the threshold, we find an abruptly increase
in the accumulation of the new capital and output, and a sudden reduction in labor. Based on these
simulations, we find two necessary conditions for the so-called robocalypse to occur: a high elasticity
of substitution between the traditional and the automatic technology and an automatic capital adoption
rate above the threshold.

In a scenario where the automatic capital adoption rate is very high (say more than 0.5), no mat-
ter how the elasticity of substitution between both technologies is, the automatic capital will dominate,
increasing output to spectacular values and reducing traditional inputs to minimum quantities. For a
high elasticity of substitution between the new and the traditional technology (i.e., σ = 5), it is observed
a dramatic and sudden fall in labor while automatic capital and output increase exponentially when the
automatic capital adoption rate is above the threshold. We find that the lower the elasticity of substitu-
tion, the lower the effect provoked by the introduction of the automatic technology is, once the threshold
level has been surpassed. In fact, when the elasticity of substitution is, for instance, of a magnitude of 1,
it is observed a slight fall in labor time together with a slight increase of automatic capital and output,
but it does not take place an abrupt change. However, the effects of the new technology increase for
higher values of the elasticity of substitution.

As it can be observed, traditional capital falls softly as the automatic capital adoption rate augments
until the threshold. For automatic capital adoption rates above the threshold, we estimate that, initially,
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24 Chapter 2. Automation, Automatic Capital Returns, and the Functional Income Distribution

the stock of traditional capital increases as the adoption rates increases, as shown in the bottom left of
Figure 2.1. This positive effect on traditional capital is provoked by the rise of returns of traditional
capital when the distribution parameter of the CES function is above the threshold. However, when the
adoption rate of the new technology reach a certain level, it is observed a sudden drop in the stock of
traditional capital. Indeed, if the elasticity of substitution is large, say of a magnitude of 5, it is observed
that this sudden drop occurs for an adoption rate around 25%. For lower values of the elasticity of
substitution, the adoption rate must be large enough (higher than the range shown in the Figures) for
this effect to be observed.

A different behavior is found in terms of labor, in spite that the elasticity of substitution between
the new technology and traditional capital and between new technology and labor are both the same.
First, working time remains almost constant for automatic capital adoption rates below the threshold
independently of the elasticity of substitution between traditional and new technology. When automatic
capital adoption rate is above the threshold, labor starts to be very sensitive to the introduction of the
new capital depending on the elasticity of substitution. We observe a dramatic decline in labor for
values of σ larger than 2.

In sum, we find the existence of a relatively large range of plausible values of the automatic capital
adoption rate for which the irruption of the automatic capital has little consequences on the economy,
independently of the elasticity of substitution between traditional and automatic technology. In addi-
tion, it is clear from these results that the elasticity of substitution of AI and robotics concerning the
traditional productive factors can vary from sector to sector, task to task, and so on. Therefore, it is
relevant to analyze the possible impact of Industry 4.0 technology in an economy depending on the
adoption rate of this technology and the elasticity of substitution regarding the rest of productive in-
puts. One could think about a scenario where the automatic capital adoption rates are higher than 45%,
as this is a potential adoption rate for current technology estimated in some studies. Our model con-
siderably illustrates the consequences of this situation. According to the benchmark calibration applied
to it, this scenario corresponds to an economy well above the threshold value. Importantly, the thresh-
old value is increasing with the depreciation rate of automatic capital. For the threshold to be around
45%, the depreciation rate should be around 0.425, a value much higher than the depreciation rate for
any existing capital assets (although not different from the allowed depreciation rates for computers in
taxing schemes). The most eye-catching scenario is one of high substitution effect that represents the
exponential growth of the automatic technology. Curiously, the most striking one would be the vision
more accepted by literature.12

From previous results, it is clear that the identified threshold value is key for assessing the con-
sequences of automation through automatic capital. The value of this threshold is just the marginal
productivity of automatic capital. In steady state, it depends only on the discount factor and on the de-
preciation rate of automatic capital. In practice, the range of variation of values for the discount factor is
small, so the depreciation rate of automatic capital would be the most influential parameter determining
the threshold.

Figure 2.2 depicts the threshold value as a function of δd and β. Given the benchmark depreciation
rate, the threshold value varies from 16% to around 20% for a range of values of the discount factor
between 0.99 and 0.95. The most influential parameter is the depreciation rate of automatic capital. For
a depreciation rate of 0.15, the threshold value is approximately 0.18, whereas for a depreciation rate of
0.25, the threshold increases to 0.28, as the relationship between both variables is linear. In short, given
that the threshold depends directly on the robots’ depreciation rate, the higher the automatic capital
depreciation rate, the lower impact the process of automatic capital adoption will have in the economy.

12Lin and Weise (2019), Eden and Gaggl (2018), Acemoglu and Restrepo (2020a), DeCanio (2016), and Artuc, Ethar and
Rijkers (2018), who, among others, assume high substitution effect of AI and robotics.
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FIGURE 2.2: Automatic capital adoption rate threshold as a function of automatic capital
depreciation rate and intertemporal discount factor.

Afterwards, we focus on the effects of automation on labor and wages. Figure 2.3 plots steady
state for labor as a function of the elasticity of substitution between new and traditional technology
for different values of the automatic capital adoption rate. The case for which labor is a constant for
any value of the elasticity of substitution corresponds to an adoption rate equals to the threshold. For
automatic capital adoptions rates below the threshold, we find that the response of labor is almost
constant for any value of the elasticity of substitution and even positive as the elasticity of substitution
increases. However, for values of the adoption rate above the threshold, the response of labor is negative
and dramatically depends on the elasticity of substitution. If the elasticity of substitution is low enough,
little effects of the new technology on labor are observed. However, as the elasticity of substitution
increases, the negative impact on hours is exacerbated. This reduction in labor reflects a reduction in
working hours. This remark is important, given that in our theoretical framework a representative
household maximizes her utility and chooses the optimal level of labor supply and leisure. In this
context, a reduction in labor (working hours) is equivalent to an increase in leisure, which augments
utility. Hence, a reduction in labor is not a necessary condition for a "robocalypse" to occur. This will
also depend on how wages and total labor income are affected.

Figure 2.4 plots the wage (left graph) and total labor income (right graph) as a function of the adop-
tion rate. We find that wages decrease as automation advance for automatic capital adoption rates below
the 22.5% threshold. These finding would match empirical results in literature. For instance, Acemoglu
and Restrepo (2020a) study the effects of a robot density increase in the labor market, and they conclude
that one more robot per a thousand worker reduces wages by 0.25-0.5 percent and the employment
to population ratio by 0.18-0.24. Then, we know for sure that it also reduces labor compensation, and
therefore, the labor share. We should bear in mind that the study analyzes data from 1990 to 2007, so it
puts the focus on a period with low robotization. In relation to that, we have already observed that its
effects on the economy for automatic capital adoption rates lower than 22.5% are not remarkable.

As we can notice, over the threshold, wages increase as automation advance. These findings coincide
with those made by Nomaler and Verspagen (2020). This is a consequence of the higher productivity
produced by the incorporation of the new technology, which also fosters labor productivity. As a result,
we find that total labor income decreases for low values of the adoption rate as automation progresses,
but that the effects of increasing automation, once the threshold level is exceeded, are positive for labor
income. This positive effect is higher as the elasticity of substitution increases, until the economy reaches
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FIGURE 2.4: Steady state values for wages as function of the automatic capital adoption rate
and the elasticity of substitution between traditional technology and automatic technology.
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a singularity (in the figure only observed for an elasticity of substitution of 5), where the robocalypse
scenario occurs. For lower values of the elasticity of substitution, the robocalypse scenario does occur
only for values of the automatic capital adoption rate above the range of values considered.

Some important implications can be derived from all previous results. The model indicates the ex-
istence of threshold conditions that divide the economy in two different worlds, where the threshold
value reflects an economic singularity if the elasticity of substitution between the traditional and the
automatic technology is large enough. On the one hand, in a world where the automatic capital adop-
tion rate is below the threshold, the new technology does not provoke significant changes in the main
macroeconomic variables, independently of the elasticity of substitution between the traditional and the
automatic technology. On the other hand, in a world where the automatic capital adoption rate is above
the threshold, this technology represents a structural change and its impact in the economy relies on the
elasticity of substitution between the traditional and the automatic technology.

Although the model represents an economy at an aggregate level, we can extract some considera-
tions at a sectoral level. In the economy, it should be expected that sectors would have different adoption
rates for automatic capital. Whereas the adoption rate of automatic capital can be large in some sectors,
in others, the adoption rate could be lower. Automatic technology would have no effects on employ-
ment in those sectors with a low adoption rate of the new technology. We find that, in sectors where
the presence of AI and robotics represents less than the estimated value of 22.5%, labor and traditional
capital increase with the elasticity of substitution while AI and robotics decrease. In sectors where the
presence of AI and robotics represents more than 22.5% of the total productive factors, labor falls when
the elasticity of substitution rises while traditional capital, AI and robotics augment. Then, we can
conclude that AI and robotics are destined to dominate those sectors in which their capacity for imple-
mentation is higher than this threshold. This technology, in the long run, will not settle down in those
sectors in which they have no capacity to represent more than 22.5% of the productive factors.

Felten et al. (2018) provide a measure of the AI capacity of penetration in different sectors by iden-
tifying AI advances at the occupation level, indicating how AI changes occupations’ characteristics.
Fossen and Sorgner (2019) build on Felten et al. (2018) and Frey and Osborne (2017) to bring a vision
of the transforming and destructive effects of AI and robotics. They identify the occupations with low
destructive effect (those with less than a 70% of computerization probability in Frey and Osborne, 2017)
and high transformer effect (more than a 3 in the scale of advances in AI provided by Felten et al., 2018)
as the "rising stars". However, occupations in the "human terrain" represent a very low number if we
compare them with the other groups and most of them have a probability of computerization higher
than 0.5. Therefore, we can argue that almost none occupation is saved from being transformed or elim-
inated by AI and robotics. Taking into account current and potential productivity and capacity of these
technologies to spare human labor, it is clear that the occupations affected by the so-call "transforma-
tion" by AI advances will experience a decrease in labor needs. This decrease can lead to a working day
reduction or labor demand contraction and it will mainly depend on the regulation imposed from labor
market institutions.

Overall, the message of this chapter is rather optimistic regarding the impact of automation on the
economy. For automation to have dramatic negative effects, the adoption rate of the new technology
must be above a identified threshold value. The depreciation rate of new capital assets is increasing, and
therefore, the depreciation rate of automatic capital is expected to be high, augmenting the threshold
point, and hence, preventing a disruptive effect by the new technology. Even in the case, the automatic
capital adoption rate would be above the threshold, robocalypse also requires a high elasticity of substi-
tution between the new automatic technology and traditional technology. To sum up, we find that the
probability of a robocalypse is very unlikely to occur. In addition, the automatic capital singularity only
appears under very specific conditions. For plausible values of the key variables, the effects of automa-
tion are found to be positive, increasing total output and labor income, while allowing a reduction in
working hours.
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2.5 Automatic capital and the functional distribution of income

One of the most important concerns regarding automation is how this process affects labor share and
labor income. The results presented in the previous section show that automation has a positive effect
on output and labor income when the adoption rate is above the threshold, except for extremely high
values of the elasticity of substitution and the automatic capital adoption rate. In this section, we use
the model to investigate the effects of the new automatic technology on the functional distribution of
income. A large and increasing body of the literature has focused on the implications of automation for
labor compensation and inequality, suggesting also that automation is one of the factors originating the
decline in labor share over the last decades (Graetz and Michaels, 2018; Charalampidis, 2020). Indeed,
the searching for an explanation on this issue remains one of the fundamental macroeconomic topics
nowadays. Karabarbounis and Neiman (2014a) argue that the decrease in the relative price of invest-
ment goods induced firms to replace labor inputs for capital inputs. Farmer and Lafond (2016) analyze
the predictability of a technological change stating that many technologies follow a generalized version
of Moore’s law since their costs tend to drop exponentially. Following this idea, the decline of the labor
share could be justified by technological change.

We depart from the existing literature by arguing that the cause of the observed decline in labor share
does not only rely on the lower price of investment goods but also on the changing character in the new
investment goods and to the productivity increase in technologies such as AI and robotics, that is, new
automatic capital deepening. Interestingly, Eden and Gaggl (2018) identify the decline in the labor share
with a decline in routine occupations. At the beginning of the nineties, routine occupations exceeded
non-routine ones but in the middle of the decade, a shift was produced and non-routine occupations
exceeded routine ones. In our model economy, total income not only is distributed between labor and
traditional capital, but also another fraction is earned by the new automatic capital. The key difference
is that, whereas a complementary relationship between traditional capital and labor exits, these two
inputs have a substitution relationship with the automatic capital input. Nomaler and Verspagen (2020)
argue that robotization will lead to a rising wage rate but ever-declining labor share. Although we
use a different technology reflecting automation, our results are consistent with those of Nomaler and
Verspagen(2020).

Capital depreciation rate is not only a key variable for assessing the impact of the new technology
on main aggregate variables but also is an important factor determining capital consumption. Given the
high values of depreciation for the new capital assets, the effects on inequality should be studied once
capital consumption is taken into account. However, most of the analysis of labor share and income
inequality ignores the distinction between gross and net income due to capital consumption. Karabar-
bounis and Neiman (2014b) highlight the importance of the physical capital depreciation rate, often
neglected, for the study of income distribution and inequality. Bridgman (2018) shows that deprecia-
tion and production taxes are important determinants of the labor share, as they are included in total
output, and hence, a fall in labor share may not imply a gaining in capital income. He shows that gross
labor share has been falling since 1970s, but this net labor share shows a more stable path. We follow
Karabarbounis and Neiman (2014b) and Bridgman (2018) analyses that account for capital depreciation
in separating gross and net labor shares.

Figures 2.5 and 2.6 plot the steady state functional distribution of income for gross and net income
resulting from simulations of the model. We find that the introduction of automatic technology is as-
sociated with labor share decline (capital-deepening effect). This labor share fall is higher as higher the
automatic capital adoption rate is, and its deepening depends on the elasticity of substitution between
the traditional and the automatic technology. For adoption rates below the threshold, little change in
labor share is observed as consequence of the introduction of the new technology. However, above the
threshold, changes are dramatic.

The estimated functional distribution of income suggests that the mere introduction of automatic
capital as an additional input for production implies a decline of the labor share, as little substitution
of traditional capital share by the new automatic capital returns is observed. Additionally, this decline
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FIGURE 2.5: The functional distribution of income, Automatic capital adoption rate and
the elasticity of substitution between traditional and automatic technology. Gross income.

is accentuated by the value of the elasticity of substitution between the new automatic technology and
traditional technology. That is, the crowding-out of traditional capital by the new automatic capital is
not complete as to offset the effects on labor income. The negative slope curvature of the labor share
steady state values, as a function of the automatic capital adoption rate, gets more pronounced as the
substitution effect gets higher. Not only labor share declines with the introduction of the automatic
capital but also the traditional capital income share. By contrast, the automatic capital income share
increases as its adoption rate does. Therefore, automatic capital is not only absorbing the decline in the
labor share but also the decline in the traditional capital income share. Again, the overall effects will
depend on whether the automatic capital adoption rate is above or below the threshold. Comparing
Figure 2.5 and Figure 2.6, we observe how the net income labor share decline is moderate when the
automatic capital adoption rate is below the threshold, or in a situation above the threshold when the
elasticity of substitution is low enough. That is, with the exception of a robocalypse scenario (high
adoption rate and high elasticity of substitution), the new technology has a moderate impact on labor
share.

As we can observe in the bottom right plot of Figure 2.5, when the elasticity of substitution among
traditional and automatic technology is equal to our lower limit (σ = 1), the automatic capital share
grows in parallel with the adoption rate as in this scenario capital share matches always the adoption
rate: 1 − µ = RdD/Y. For a higher elasticity of substitution, automatic capital share increases in a non-
proportional way for robot adoption rates below the threshold, but disproportionately for adoption
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FIGURE 2.6: The functional distribution of income, Automatic Capital adoption rate and
the elasticity of substitution between traditional and automatic technology. Net income.
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rates above the threshold. Acemoglu and Restrepo (2020) study the effects of a robot density increase
in the labor market, and they conclude that one more robot per a thousand worker reduces wages by
0.25-0.5 percent and the employment to population ratio by 0.18-0.24. Then, we know for sure that it
also reduces labor compensation, and therefore, the labor share.13

Charalampidis (2020) remarks the counter-cyclical character of the U.S. labor share.14 They justify
the causes of its fluctuations with the following elements and proportions: automation (54%), workers’
market power (24%) investment efficiency (6%), and the relative price of investment account (4%). For
Prettner (2019), automation only explains the 14% of the observed decline of the labor share over the last
decades in the United States, while Aum et al. (2018) argue that computerization during the 1990s gives
a rationale for most of the decline in the labor share between 1980 and 2010 (4 out of 5 percentage points).
Guerriero (2019) ascertains the global decline of the labor share, taking into account 151 economies in
a panel data analysis and concluding that labor share varies significantly among economies and it has
decreased over time especially since 1980. In the case of Europe, Dao et al. (2017) analyzes the decrease
in the labor income share distinguishing between advanced economies and emerging markets. They
discover that half of the overall decline in advanced economy is due to the technological progress and
varying exposure to routine occupations.

In the literature, several authors have drawn a very negative picture for future labor share, as well as
a horizon of hyper inequality originated by technological progress. For instance, Piketty (2014) argues
that capital returns grow more than economic growth itself and this causes inequity. Consequently, un-
der this scenario, it seems clear that the intervention of the government is needed to deal beforehand
about what could be a major problem in the forthcoming decades. This is why numerous authors re-
mark the necessity of a robot tax (Guerreiro et al., 2017; Thuemmel, 2018), or an Universal Basic Income
(Hoynes and Rothstein, 2019), which could be interpreted as reminiscent of Luddite thought. However,
other authors adopt a more optimistic view of predicting a soft transition without dramatic losses in
worker earnings. Bongers and Molinari (2020) study trends in average working time from the Indus-
trial Revolution and argue that automation represents a new technological revolution that can have an
important impact in the reduction of average working time while increasing compensation to employ-
ees level. Our analysis reflects both pessimistic and optimistic views; only under certain very specific
conditions (high automatic capital adoption rate and high elasticity of substitution between new capi-
tal and traditional technology), working time experiments a great fall. However, for low values of the
elasticity of substitution between new and traditional technology and low adoption rate of the new
technology, little negative effects on labor share are predicted. As a consequence, only in the scenario
where the automatic capital adoption rate is above the threshold, some kind of redistribution policies
must be implemented to reduce inequality provoked by automation.

2.6 Conclusions

This chapter develops a simple macroeconomic general equilibrium model to analyze how the intro-
duction of new automatic technology can affect the economy. The main hypothesis is the consideration
of a new type of capital (i.e., automatic capital) that can produce final goods in a stand-alone fashion.
This new technology directly competes with the traditional one. The example of the combination of a
cab-car with a cab-driver in front of a self-driving cab is highly illustrative in order to better understand
the implications of this technological change process. The model is simulated and the steady states are
computed depending on the new automatic capital adoption rate, which we assume equivalent to the

13We should bear in mind that the study analyzes data from 1990 to 2007, so it puts the focus on a period with low robotiza-
tion and we have already observed that its effects on the economy for automatic capital adoption rates lower than 22.5% are
not remarkable. In fact, Charalampidis (2020) highlights that automation shocks are the main cause of the post-2007 cyclical
labor share drop.

14Leduc and Liu (2019) also find a countercyclical character in it. Their explanation for this fact is that automation improves
labor productivity while muting wage increases.
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distribution technological parameter of a CES combining both technologies, and on the elasticity of sub-
stitution between the traditional and the new technology. From this analysis we draw some important
conclusions and key issues that can be worth noting in helping us to consider the potential impact of
this new technology.

The most important result of the chapter is the identification of a threshold value for the automatic
capital adoption rate which leads to the possibility of two totally different scenarios. The threshold value
for new capital adoption rate has a simple interpretation, being equal to the marginal productivity of
the new capital in steady state. This allows us to easily identify its determinants: the discount factor
and the depreciation rate of the new capital. For the benchmark calibration of the model, where the
annual discount factor is 0.975 and automatic depreciation rate is 20%, the threshold value for the new
capital adoption rate is around 22.5%. At this threshold, the stock of automatic capital equals the output.
For adoption rates below the threshold, where the elasticity of substitution between the traditional and
the automatic technology is not a relevant variable, we do not observe significant changes in the main
variables of the economy. However, things are completely different when the adoption rate is above the
threshold because the elasticity of substitution between both technologies becomes an important vari-
able. In a scenario with an automatic capital adoption rate below the threshold, working time slightly
increases as higher is the substitution effect of the new automatic technology. On the contrary, in an sce-
nario with an automatic capital adoption rate above the threshold, we find the opposite process, since
labor falls abruptly, although wages and total labor income increase before the singularity appears.

The introduction of the new automatic technology can provoke a radical fall on both working time
and labor share, but for this to happen a high substitution effect between the traditional and the au-
tomatic technology and a high presence of the new automatic technology are needed. We study the
relationship between this new automatic capital and the functional distribution of income with the aim
of shedding some light on the decline of the labor share, and we find that the mere introduction of the
automatic technology implicitly causes a decline in labor share. The dimensions of this decline depend
directly on the elasticity of substitution between technologies and the adoption rate. This decline is
almost the same for any elasticity of substitution until the automatic capital adoption rate matches the
threshold. Consequently, the elasticity of substitution plays a crucial role in augmenting the decline of
the labor share.

From the previous results, we can establish the necessary conditions for the so-called robocalypse to
occur. The mere introduction of the automatic capital does not imply a great fall in labor. For an abrupt
decline in labor, a high substitution effect between technologies and an automatic capital adoption rate
above the threshold are required. These would be the two necessary requirements for the robocalypse to
take place: a high adoption rate of automatic technology and a high substitution elasticity between new
and traditional technologies. In any other scenario, automatic technology can perfectly coexist with
traditional technology having a positive impact on output, wages and labor income as the automatic
capital adoption rate increases.

Empirical evidence about robots adoption rates estimates that potential AI and autonomous robot
penetration is relatively high (above 45%), a value well above our estimated threshold. Additionally,
empirical evidence also affirms that the elasticity of substitution between new and traditional technolo-
gies could be also of high magnitude. The combination of that empirical evidence moves the economy
to our robocalypse scenario, where labor collapses. The threat of an unprecedented increase in inequal-
ity under this scenario can be clearly observed in our analysis of the functional distribution of income.
Nevertheless, the high depreciation rate of new equipment (and the increasing depreciation rate over
time for computers, telecommunication equipment, software), implies that the threshold adoption rate
can be also increasing in the future, reducing the risk of robocalypse, even for the case of high elasticity
of substitution between both technologies. Thus, this chapter opens the possibility that the robocalypse
scenario could be avoided, as the threshold for the adoption rate will increase at the same proportion
than the depreciation rate of new automatic capital assets.
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2.7 Technical Appendix

This technical appendix presents the first order conditions of the household maximization problem and
the application of the Blanchard-Khan method for proving the existence and uniqueness of the model’s
solution, using the rank condition approach (Blanchard and Khan, 1980).

2.7.1 The model

Technology

The aggregate production technology is a CES function for traditional technology using capital and
labor nested into another CES function. In this function, new and traditional technology are substitute
of each other. We define the following aggregate production function to represent these technological
combinations:

Yt = [µXυ
t + (1 − µ) Dt

υ]
1
υ (A2.1)

where Yt is the final output, Xt represents traditional technology, µ is a distribution parameter for the
traditional productive factors versus the new technology, Dt is the automatic capital, and υ measures
the substitution between the traditional production technology and the new technology. The elasticity
of substitution between traditional and automatic technologies is defined as σ = 1/(1 − υ).

The traditional technology is represented by another CES function:

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(A2.2)

where Kt is the traditional capital, Lt is labor, α is a distribution parameter of inputs and θ measures
the substitution between traditional capital and labor. The elasticity of substitution is defined as ε =
1/(1 − θ). Firms maximize profits in a competitive environment taken factor prices as given, solving
the following static maximization problem at each period:

max Πt = Yt − WtLt − Rk,tKt − Rd,tDt (A2.3)

From the first order conditions of the firm’s profit maximization problem, we obtain the following
marginal productivity of each of the three productive factors:

Rk,t = αµY1−υ
t Xυ−θ

t Kt
θ−1 (A2.4)

Wt = (1 − α) µY1−υ
t Xυ−θ

t Lt
θ−1 (A2.5)

Rd,t = (1 − µ)Y1−υ
t Dt

υ−1 (A2.6)

where the Euler Theorem holds, profits are zero and output is distributed among the three productive
factors, given the assumptions of a competitive market and constant returns to scale.

Households

We assume that the utility function of our representative household is as follows:

U(Ct, Lt) = γlog(Ct) + (1 − γ)log(1 − Lt) (A2.7)

where Ct is total consumption and γ is a parameter reflecting the willingness to sacrifice units of con-
sumption in favor of leisure time. Total available time has been normalized to one, so leisure is defined
as 1 − Lt, where 0 ≤ Lt < 1.
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Automatic capital accumulation process is defined as:

Dt+1 = (1 − δd)Dt + Id,t (A2.8)

where 0 < δd < 1 is the depreciation rate of automatic capital and Id is investment in automatic capital.
Similarly, traditional capital accumulation is given by:

Kt+1(1 − δk)Kt + Ik,t (A2.9)

where 0 < δk < 1 is the traditional capital depreciation rate, and Ik is investment in traditional capi-
tal. In order to follow Blanchard and Kahn (1980) procedure to proof the existence and uniqueness of
the model’s solution, we define the model with an aggregate investment variable. Total investment is
defined as:

It = Id,t + Ik,t (A2.10)

The representative household satisfies the following budget constraint:

Ct + It = WtLt + Rk,tKt + Rd,tDt (A2.11)

Therefore, since It = Id,t + Ik,t, we can write the following capital accumulation process:

It = Kt+1 + Dt+1 − (1 − δk)Kt − (1 − δd)Dt (A2.12)

In the solution of the model, we have to consider the aggregate investment, as the Blanchard and
Kahn (1980) method requires the split of the vector of endogenous variables in two vectors: one vec-
tor for static variables, and another vector for state and forward-looking variables. Given that in the
static system we have only one equation for solving investment (the feasibility condition), we need to
aggregate both capitals accumulation processes. The solution of these two capitals is obtained from the
system of forward-looking and state variables, given that the model has two equations for the consump-
tion optimal path.

The maximization problem faced by the infinity-lived representative household with perfect-foresight
is given by,

max
{Ct,Lt}

∞

∑
t=0

βt [γlnCt + (1 − γ) ln(1 − Lt)] (A2.13)

subject to restrictions (A2.11) and (A2.12), where K0 and D0 are given, and where β is the intertemporal
discount factor. The Lagrange auxiliary function for the household’s maximization problem is,

Max
(Ct,Lt,Kt,Dt)

∑∞
t=0 L = βt[[γlog(Ct) + (1 − γ)log(1 − Lt)]

−λt(Ct + Kt+1 − (1 − δk + Rk,t)Kt + Dt+1 − (1 − δd + Rd,t) Dt − WtLt)]
(A2.14)

where λt denotes the Lagrange’s multiplier. First order conditions for the consumer maximization prob-
lem are:

∂L
∂Ct

:
γ

Ct
− λ1,t = 0 (A2.15)

∂L
∂Lt

:
−(1 − γ)

1 − Lt
+ λ1,tWt = 0 (A2.16)

∂L
∂Kt+1

: −βtλ1,t + βt+1λ1,t+1 [(1 − δk) + Rk,t+1] = 0 (A2.17)

∂L
∂Dt+1

: −βtλ1,t + βt+1λ1,t+1 [(1 − δd) + Rd,t+1] = 0 (A2.18)
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Equilibrium conditions, representing Euler equations, from the household’s maximization problem
are:

1 − γ

γ

Ct

1 − Lt
= Wt (A2.19)

1 = β
Ct

Ct+1
(1 − δk + Rk,t+1) (A2.20)

1 = β
Ct

Ct+1
(1 − δd + Rd,t+1) (A2.21)

They make reference to optimal labor supply, investment decision on traditional capital and invest-
ment decision on automatic capital, respectively. These three equilibrium conditions together with the
following standard transversality conditions for each type of capital:

lim
t→∞

βtλtKt+1 = 0 (A2.22)

lim
t→∞

βtλtDt+1 = 0 (A2.23)

and initial conditions, fully characterize optimal trajectories for the variables in the long-run.
Therefore, the model is composed by the following system of ten equations for ten unknown:

Yt = [µXυ
t + (1 − µ) Dt

υ]
1
υ (A2.24)

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(A2.25)

Rk,t = αµY1−υ
t Xυ−θ

t Kt
θ−1 (A2.26)

Wt = (1 − α) µY1−υ
t Xυ−θ

t Lt
θ−1 (A2.27)

Rd,t = (1 − µ)Y1−υ
t Dt

υ−1 (A2.28)

It = Kt+1 + Dt+1 − (1 − δk)Kt − (1 − δd)Dt (A2.29)

1 − γ

γ

Ct

1 − Lt
= Wt (A2.30)

1 = β
Ct

Ct+1
(1 − δk + Rk,t+1) (A2.31)

1 = β
Ct

Ct+1
(1 − δd + Rd,t+1) (A2.32)

Y = C + I (A2.33)

for all t = 0, 1, 2, ...

2.7.2 Steady State

The steady state solution of the model is given by the following system of 10 equations for ten unknown
quantities, (Y, C, I, K, D, X, L, W, Rk, Rd), where variables without a time index represent steady state
values:

Rd =
1
β
− 1 + δd (A2.34)

Rk =
1
β
− 1 + δk (A2.35)

I = δdD + δkK (A2.36)
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W =
1 − γ

γ

C
1 − L

(A2.37)

Y = [µ Xυ + (1 − µ) Dυ]
1
υ (A2.38)

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(A2.39)

Y = C + I (A2.40)

L =

[
Y1−υ (1 − α) µXυ−θ

W

] 1
1−θ

(A2.41)

K =

[
Y1−υαµXυ−θ

Rk

] 1
1−θ

(A2.42)

D = Y
[
(1 − µ)

Rd

] 1
1−υ

(A2.43)

From these equations, we can obtain steady state expressions where only parameters appear. How-
ever, these expressions are too large to be shown in the document. Therefore, we allow variables Rd,
Rk, W and X to appear once their steady state expressions have been shown. Note that expressions for
interest rates are immediate:

Rk = δk +
1
β
− 1 (A2.44)

Rd = δd +
1
β
− 1 (A2.45)

Next, we derive the wage steady state value. In order to do that, we start from equation (A2.5).
First, we obtain an expression for Y as a function of model parameters and traditional production D by
substituting equation (A2.43) into equation (A2.38):

Y = X

 µ
1−µ

1
1−µ −

(
Rd

1−µ

) υ
υ−1


1
υ

(A2.46)

Next, by substituting the previous expression in equation (A2.42), we obtain an identity for K as a
function of model parameters and traditional production:

K = X


Rk

µ α

(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1−υ
υ



1
θ−1

(A2.47)

We take this expression and introduce it in equation (A2.39) in order to obtain an identity for L as a
function of model parameters and traditional production:
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L = X


1 − α


Rk

µ α

(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1−υ
υ



θ
θ−1


1
θ

(1 − α)
(−1)

θ (A2.48)

Now, we take equation (A2.5) and substitute Y and L by the expression we have obtained (A2.46)
and (A2.48):

W = (1 − α)
1
θ µ

 µ
1−µ

1
1−µ −

(
Rd

1−µ

) υ
υ−1


1−υ

υ

Xυθ

Xυθ


1 − α


Rk

µ α

(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1−υ
υ



θ
θ−1


1
θ

(A2.49)

As we can easily observe in the middle of the expression, traditional production goes, so we have an
identity for wage depending only on model parameters:

W = (1 − α)
1
θ µ

 µ
1−µ

1
1−µ −

(
Rd

1−µ

) υ
υ−1


1−υ

υ


1 −


α

(−1)
θ Rk

µ

(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1−υ
υ



θ
θ−1


θ−1
θ

(A2.50)

Now we substitute expression (A2.46) into equation (A2.43) in order to have an identity for auto-
matic capital as a function of model parameters and traditional production:

D = X

 µ
1−µ

1
1−µ −

(
Rd

1−µ

) υ
υ−1


1
υ (

Rd

1 − µ

) 1
υ−1

(A2.51)

We introduce this identity and identity (A2.47) in equation (A2.36) and we obtain investment de-
pending on model parameters and traditional production:

I = X




Rk

µ α

 µ
1−µ

1
1−µ

−
(

Rd
1−µ

) υ
υ−1


1−υ

υ



1
θ−1

δk

+
(

Rd
1−µ

) 1
υ−1

(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1
υ

δd


(A2.52)

By introducing this expression and expression (A2.46) in equation (A2.40), we obtain the identity for
consumption:
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TABLE A2.1: Calibrated parameters

Parameter Definition Value
Preferences β Discount factor 0.975

γ Consumption-leisure preference parameter 0.40
Technology α Capital share in the traditional technology 0.35

δk Traditional capital depreciation rate 0.06
δd Automatic capital depreciation rate 0.20
ε Traditional capital-labor elasticity 0.90
σ Traditional-automatic technologies elasticity 2
µ Technologies distribution parameter 0.775

C = X



(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1
υ (

1 −
(

Rd
1−µ

) 1
υ−1

δd

)

−


Rk

µ α

 µ
1−µ

1
1−µ

−
(

Rd
1−µ

) υ
υ−1


1−υ

υ



1
θ−1

δk


(A2.53)

Finally, we substitute our expressions for C and L in equation (A2.37) to obtain traditional production
as a function of only model parameters:

X =
W

1−γ
γ



(
µ

1−µ

1
1−µ−

(
Rd

1−µ

) υ
υ−1

) 1
υ (

1 −
(

Rd
1−µ

) 1
υ−1

δd

)

−


Rk

µ α

 µ
1−µ

1
1−µ

−
(

Rd
1−µ

) υ
υ−1


1−υ

υ



1
θ−1

δk


+ W


1−α


Rk

µ α


µ

1−µ

1
1−µ

−
(

Rd
1−µ

) υ
υ−1


1−υ

υ



θ
θ−1



1
θ

(1−α)
1
θ

(A2.54)

The expression for X is too large to fit in the page, so we substitute the wage expression given by
equation (A2.54) by the symbol W. As the expression for wage only depends on model parameters, X
also depends only on model parameters. By substituting X into the previous expressions we have all
variables results as functions of model parameters. We can observe that the solution for the variables in
steady state is intractable. Therefore, we solve the steady state of the model numerically. For that, we
use a Newton-Raphson type algorithm. Given the calibration of the parameters in Table A2.1, we obtain
the steady state values presented in Table A2.2. We repeat this procedure for each value in the range of
values for µ ∈ [0.55, 0.95] and σ = {1, 1.5, 2, 5}.
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TABLE A2.2: Steady state values

Variable Definition Value
Y Output 0.600593778157051
X Traditional output 0.601584903797054
C Consumption 0.379346639133977
I Investment 0.221247139023074
K Traditional capital stock 1.696831801806420
D Automatic capital stock 0.597186154573441
L Labor 0.360325150537142
W Labor marginal productivity 0.360325150537142
Rd Automatic capital marginal productivity 0.085641025641026
Rk Traditional capital marginal productivity 0.225641025641026

2.7.3 Log-linearized model

The Blanchard and Kahn solution method requires the model to be linear. Therefore, we proceed to
linearizing the model around its steady state. The model is highly nonlinear, reflecting very complex
relationships between different economic variables. This hampers their practical application. To solve
this problem, we resort to performing a linear approximation to the equations of the model.

We express the variables of the model as log-linear deviations with respect to their steady state
values. The log-linear deviation of a variable u around its steady state, u, is denoted as û, where ût =
ln ut − ln u. In constructing the log-linear deviations, we follow three basic rules (Uhlig, 1999). First, a
variable of the model can be defined as:

ut = uût ≈ u(1 + ût) (A2.55)

Second, for the case of the two variables product ut and zt, we have:

utzt ≈ u(1 + ût)z(1 + ẑt) ≈ uz(1 + ût + ẑt) (A2.56)

that is, we assume that the product of the two deviations, i.e., ût ẑt, is approximately equal to zero, as
they are small numbers. Third, we assume the following approximation for the power of a variable:

ua
t ≈ ua(1 + ût)

a ≈ ua(1 + aût) (A2.57)

Taking into account the above definitions, the model in log-linearized form is the following:

ŷt = µx̂t + (1 − µ)d̂t (A2.58)

x̂t = αk̂t + (1 − α)l̂t (A2.59)

K
I

k̂t+1 +
D
I

d̂t+1 = ît + (1 − δk)
K
I

k̂t + (1 − δd)
D
I

d̂t (A2.60)

Et ĉt+1 − ĉt = βRk r̂k,t+1 (A2.61)

Et ĉt+1 − ĉt = βRdr̂d,t+1 (A2.62)

ŷt =
C
Y

ĉt +
I
Y

ît (A2.63)

ĉt = ŵt −
L

1 − L
l̂t (A2.64)
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ŵt = (1 − υ)ŷt + (υ − θ)x̂t + (θ − 1)l̂t (A2.65)

r̂k,t+1 = (1 − υ)ŷt+1 + (υ − θ)x̂t+1 + (θ − 1)k̂t+1 (A2.66)

r̂d,t+1 = (1 − υ)ŷt+1 + (υ − 1)d̂t+1 (A2.67)

Given the intractability of steady state expressions, we do not substitute steady state values for
the variables in the log-linearized equations. By substituting, we reduce the log-linearized model to a
system of six equations for six unknowns (Y, C, I, K, D, L):

ŷt = µαk̂t + µ(1 − α)l̂t + (1 − µ)d̂t (A2.68)

K
I

k̂t+1 +
D
I

d̂t+1 = ît + (1 − δk)
K
I

k̂t + (1 − δd)
D
I

d̂t (A2.69)

Et ĉt+1 − ĉt = βRd

[
(1 − υ)ŷt+1 + (υ − 1)d̂t+1

]
(A2.70)

Et ĉt+1 − ĉt = βRk

[
(1 − υ)ŷt+1 + (υ − θ)(αk̂t+1 + (1 − α)l̂t+1) + (θ − 1)k̂t+1

]
(A2.71)

ŷt =
C
Y

ĉt +
I
Y

ît (A2.72)

ĉt = (1 − υ)ŷt + (υ − θ)(αk̂t + (1 − α)l̂t) + (θ − 1)l̂t −
L

1 − L
l̂t (A2.73)

2.7.4 The log-linearized system in matrix form

Once we have the model in log-linear form, we can proceed with its resolution, although we have
to bear in mind that this is an approximation of the original highly nonlinear model. The literature
has proposed different alternative methods to solve a DSGE model. The most popular method is the
proposed by Blanchard and Kahn (1980). Here, we use this solution method. We start by defining the
following two vectors of deviations from the steady state, x0

t and s0
t :

x0
t =

 ŷt

ît

l̂t

 (A2.74)

s0
t =

 k̂t

d̂t
ĉt

 (A2.75)

where the first vector comprises deviations in production, investment, and employment from their
steady state values, that is, static variables;and the second vector is formed by the deviations of the
capital stock and consumption, that is, forward looking and state variables.

First, we can write the following system:

Ax0
t = Bs0

t (A2.76)

consisting of the following three equations:

ŷt − µ(1 − α)l̂t = µαk̂t + (1 − µ)d̂t (A2.77)
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ŷt −
I
Y

ît =
C
Y

ĉt (A2.78)

(1 − υ)ŷt +

[
(υ − θ)(1 − α) + (θ − 1)− L

1 − L

]
l̂t = ĉt − (υ − θ)αk̂t (A2.79)

and where the constant matrices are given by:

A =

 1 0 −µ(1 − α)
1 − I

Y 0
(1 − υ) 0 Ω



B =

 µα (1 − µ) 0
0 0 C

Y
−(υ − θ)α 0 1


and where

Ω = (υ − θ)(1 − α) + (θ − 1)− L
1 − L

We also define the following system in terms of the expected future value of the variables in the
model:

FEts0
t+1 + GEtx0

t+1 = Hs0
t + Jx0

t (A2.80)

where Et(·) denotes expected value, consisting in the following three equations:

K
I

k̂t+1 +
D
I

d̂t+1 = ît + (1 − δk)
K
I

k̂t + (1 − δd)
D
I

d̂t (A2.81)

Et ĉt+1 − βRd

[
(1 − υ)ŷt+1 + (υ − 1)d̂t+1

]
= ĉt (A2.82)

Et ĉt+1 − βRk

[
(1 − υ)ŷt+1 + (υ − θ)(αk̂t+1 + (1 − α)l̂t+1) + (θ − 1)k̂t+1

]
= ĉt (A2.83)

where the matrices are given by:

F =

 K
I

D
I 0

0 −βRd(υ − 1) 1
−βRk [(υ − θ)α + (θ − 1)] 0 1



G =

 0 0 0
−βRd(1 − υ) 0 0
−βRk(1 − υ) 0 −βRk(υ − θ)(1 − α)



H =

(1 − δk)
K
I (1 − δd)

D
I 0

0 0 1
0 0 1



J =

0 1 0
0 0 0
0 0 0


The system (A2.76) can be written as:

x0
t = A−1Bs0

t
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Taking one period ahead, the above system should be:

Etx0
t+1 = A−1BEts0

t+1

Substituting in the system (A2.80) we find that:

(F + GA−1B)Ets0
t+1 = (H + JA−1B)s0

t

Solving the matrices, the final system would be:

Ets0
t+1 = Ms0

t

where:
M = (F + GA−1B)−1(H + JA−1B)

Operating, we obtain that matrix M is given by:

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33


However, the elements of matrix M are too long to be written, and hence, we have to draw upon

numerical analysis. Using the Jordan decomposition, the matrix M can be decomposed such as:

M = O−1NO

where:

N =

N11 0 0
0 N22 0
0 0 N33


and where:

O =

O11 O12 O13
O21 O22 O23
O31 O32 O33


Notice that the elements of the diagonal of N are the eigenvalues of the matrix M. In order for the

solution to be unique, two eigenvalues must be inside the unit circle, with only one eigenvalue outside
the unit circle. This is the so-called Blanchard-Kahn rank condition. If the rank condition does not hold,
then the equilibrium is not unique. The columns of O−1 are the eigenvectors of the matrix M variables.

However, matrix M is too big for a closed form expression to be obtained. Hence, the only way to
obtain a value for eigenvalues is numerically. Using the calibrated values of the parameters and the
values of steady state, the matrices results in:

A =

 1 0 −0.5038
1 −0.3684 0

0.5000 0 −1.2771



B =

 0.2712 0.2250 0
0 0 0.6316

−0.2138 0 1
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F =

7.6694 2.6992 0
0 0.1100 1

0.0749 0 1



G =

 0 0 0
−0.1100 0 0
−0.0418 0 −0.0332



H =

7.2092 2.1593 0
0 0 1
0 0 1



J =

0 1 0
0 0 0
0 0 0


Given that M = (F + GA−1B)−1(H + JA−1B), we obtain that:

M =

 0.8127 0.2821 −0.2914
0.8071 0.2802 −0.3014
−0.0231 −0.0080 0.9579


where

N =

−2.2 × 10−17 0 0
0 1.142 0
0 0 0.9084


As we can observe, the matrix N has two eigenvalues inside the unit circle and one outside the unit

circle. This proves the existence and uniqueness of the solution of the model. We repeat this procedure
for each value in the range of values for µ ∈ [0.55, 0.95] and σ = {[1, 1.5, 2, 5}, and in all the cases the
rank condition holds, that is, two eigenvalues are inside the unit circle and one eigenvalue outside the
unit circle.
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Chapter 3

Government size and automation

3.1 Introduction

The impressive technological progress in hardware combined with advances in Artificial Intelligence
(AI) observed in the last decade has raised a number of concerns about the economic implications of
the incoming fourth industrial revolution for human labor and income distribution. In some cases, these
concerns resemble a revival of Luddite ideas regarding the incorporation of a new type of capital into
production activities as a disruptive technology. These reactionary thoughts find their explanation in
the predictions made by AI experts, affirming that there is a 50% chance of AI outperforming humans in
all tasks in 45 years and of automating all human jobs in 120 years (Grace et al., 2017). This progressive
process of AI gaining competitive advantages against humans promises to have a huge impact in labor
markets as has never been seen before. 1 The main characteristic of this new technological revolution
is that humans seem to have a minor space to compete with automation and this space is reduced even
more as AI and robotics outperform high-skilled human workers even in cognitive and creative tasks,
and not just in routine and repetitive tasks as in previous technological revolutions. Faced with this
disturbing scenario, it has been common to hear about the necessity of controlling and regulating the
new disruptive technology in order to protect workers and economic stability. See, for example, Frey
and Osborne (2017), Manyika et al. (2017), Aum et al. (2018), Berg et al. (2018), and Acemoglu and
Restrepo (2020a).

The potential impact, particularly on labor, of this combination of AI and robots, is at the frontline of
the current economic debate. However, the anticipated effects of "intelligent" or "autonomous" automa-
tion do not have a clear answer. Whereas some authors adopt a Luddite view, predicting a scenario with
automation displacing human labor (Acemoglu and Restrepo, 2020a; Korinek and Stiglitz, 2021), other
authors state that the potential impact of the current generation of robots is limited (Fernández-Macías
et al., 2021). In this line, other authors draw attention to the positive effects of automation on produc-
tivity and economic growth (Autor, 2015; Graetz and Michaels, 2018), and to increases in aggregate
employment (Klenert et al., 2022), and encouraging the creation of new tasks (Acemoglu and Restrepo,
2018d). 2

This chapter explores a new dimension of automation not previously studied in the literature to
the best of our knowledge: its impact on public finance. According to the aforementioned predictions,
the current technological revolution also presents a challenging scenario for public finance. Automa-
tion will change the relative importance of inputs in the economy and the way in which income is

1In particular, it is predicted that AI will outperform humans in translating languages (by 2024), writing high-school essays
(by 2026), driving a truck (by 2027) and working in retail (by 2031). Furthermore, in the next decades, the process would make
AI outperform humans at writing a bestselling book (by 2049 ) and working as a surgeon (by 2053).

2It is important to note that the concept of what a "robot" varies from one paper to another, leading to different specifications
of how robots are incorporated into the aggregate production function. For some authors (i.e., Thuemmel, 2022), a robot is a
machine that replaces low-skill workers. In this case, a robot is not different from other traditional capital equipment assets.
Other authors (Lin and Weise, 2019) propose a specification for technology in which robots are substitutes for labor, without
distinguishing between lowand high-skill workers. In this chapter, we adopt the interpretation of "autonomous" or "intelli-
gent" capital as a combination of robots and AI, and following Casas and Torres (2023), we consider that this autonomous
capital is a substitute for both traditional capital equipment and labor.
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distributed among production factors. These changes will have a direct impact on public finance given
the current tax mix. Recently, the debate has revolved around how to tax the new autonomous capital.
Although numerous authors have claimed the necessity of taxing robots, the literature lacks an analysis
of the effects of robotization on public finance based on the current tax mix. This chapter contributes to
the literature by analyzing how public finance evolves with the expansion in the economy of the new
disruptive autonomous technology. In particular, we examine how total tax revenues, including social
security contributions, evolve with automation in the long run. In order to carry out this analysis, we
use the automation model by Casas and Torres (2023), extended with taxes. Using the steady-state so-
lution of the calibrated model, we carry out three experiments to explore how tax revenues evolve as
the new autonomous technology spread through the economy. First, we study how the government
size, measured by the fiscal revenues to output ratio, changes as automation increases. We find that
as automation increases, the competition between traditional technology and autonomous technology
leads to a fall in the size of the government. Automation expands output in the long run but provokes
a reallocation of inputs with the subsequent impact on public finance, depending on how the tax mix
is designed. Capital income tax revenues remain almost constant, but we find a dramatic reduction
in labor income tax revenues and in social security contributions. This is explained by the negative
response of labor to automation, where a large fraction of labor is substituted by autonomous capital.
These results warn that the standard tax mix adopted by advanced economies, where labor payroll taxes
represent a significant fraction of fiscal revenues, is not able to maintain the size of the government as
automation increases.

Second, we calculate how tax rates should be adjusted to keep fixed fiscal revenues. As expected,
the payroll taxes rates and the consumption tax rate should be increased progressively as automation
increases, to compensate for the decline in the tax bases due to the reduction in working hours and
the rise in the investment-to-output ratio to compensate for the higher depreciation rate of autonomous
capital, respectively. By contrast, we find that the capital tax rate could be reduced slightly as capital
income increases because of the accumulation of autonomous capital. However, this type of tax policy
would have dramatic harmful effects on economic activity, reducing output and consumption and fur-
ther depressing labor supply. The results from this experiment arise an important question about how
the tax mix scheme should be reformed to accommodate the effects of automation. To answer the above
question, the third experiment consists of the calculation of the capital income tax rate necessary to keep
fixed total fiscal revenues, without changes in the other tax rates. We find that the capital income tax rate
should increase as the rate of automation increases, reaching a value of around 77%, for an automation
rate of 45%.

Finally, we carry out a sensitivity analysis to assess the robustness of previous results to different
calibrations of the key parameters of the model and alternative specifications of the technology. First,
we study how the results from the previous experiments change to alternative values of the elasticity of
substitution between the traditional and the new technology. Second, we repeat the simulations using
an alternative aggregate production function widely used in the literature, where autonomous technol-
ogy is a substitute for labor. In both cases, we find that results and insights are robust to alternative
calibration and to the alternative specification of the technology.

The structure of the rest of the chapter is as follows. Section 2 discusses the related literature. Section
3 presents a stylized model for automation, where two types of technologies are considered: traditional
technology using traditional capital and labor, and autonomous technology using autonomous capital
resulting from the combination of robots and AI. The model considers a fully specified tax menu, includ-
ing a consumption tax, a labor tax, a capital income tax, and a social security tax which payment splits
between employees and employers. Section 4 presents the calibration of the model. Section 5 presents
the main results from the three experiments. Section 6 presents the sensitivity analyses. Finally, Section
7 collects the main conclusions.
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3.2 Related literature

This chapter is related to the literature on taxing robots. The idea of taxing robots is not new and a tax on
labor-saving machinery as a policy to help displaced workers already appeared in the US throughout the
Great Depression of the 1930s (Woirol, 2018). Several proposals have been done to tax robots with two
objectives: first, to delay or discourage automation, and second, to obtain additional public revenues
to be transferred to displaced workers and to sustain the social security system. In this venue, the
potential negative effects of automation on human labor have also raised concerns about pay-as-you-go
social security system sustainability (Jimeno, 2019; Basso and Jimeno, 2019) and voices demanding a
universal basic income (Hoynes and Rothstein, 2019; Cabrales et al., 2020; Jaimovich et al., 2021).

Guerreiro et al., (2022) defend that it is optimal to tax robots while there are still routine workers,
but once all these workers are retired (automatized), the optimal robot tax should be zero. Vermuelen et
al., (2020) propose the distinction across economies with labor surplus and labor scarcity, arguing that
only in case of labor surplus it is commendable to tax robots to prevent robotization in order to avoid
exacerbating unemployment and wage stagnation. These studies could be linked to the one developed
by Thuemmel (2022), who interprets robots as a substitute for routine labor and a complement to non-
routine labor to affirm that the optimal robot tax is positive and generates small welfare gains. However,
as the price of robots falls, inequality rises and the specific robot tax and its welfare impact become
insignificant. When robots get cheap enough to replace all routine labor, the robot tax turns meaningless.
Zhang (2019) remarks on the importance of a tax on robots as a useful tool to narrow down the wage
gap between unskilled and skilled workers. Moreover, Gasteiger and Prettner (2022) show that a robot
tax has the potential to raise per capita output and welfare.

However, specific robot taxes rises a number of difficulties. Mazur (2019) cautions against the use
of a robot tax arguing that it is the wrong tool to face the issues driven by automation and warns of
the potential consequences of such tax, remarking on the limiting of innovation. Moreover, Marwala
(2018) put focuses on the difficulty of distinguishing what a robot is and what a robot is not and con-
cludes that taxing robots is the same as increasing corporate taxes. This difficult task of defining what a
robot is and taxing it has led to several approaches and legal analyses about this matter. Chekina et al.,
(2018) propose applying taxation to new cyber-physical technologies and products of their application,
replacing digital transactions and shortfalls in revenues by traditional objects of taxation in the form
of tangible assets and people, increasing tax pressure and the degree of progressiveness of taxes and
building a new tax space with smart taxes based on real-time principles, smart contracts and Big Data.
Costinot and Werning (2018) analyze technology regulation in a second-best world, with rich hetero-
geneity across households, linear taxes on the subset of firms affected by technological change, and a
nonlinear tax on labor income.

With a broader focus, Kovacev (2020) analyze diverse tax systems to conclude that any tax system
that relies on human effort to raise revenues is vulnerable to dislocation with the rise of AI and robotics,
while Oberson (2019) remarks that tax issues go much beyond the borders of any particular state and ar-
gues that they should be analyzed globally taking into account the recent developments in international
taxation. 3

This chapter is also related to the literature exploring the macroeconomic implications of govern-
ment size. Galí (1994) parameterizes the government size by the income tax rate and the share of
government purchases in output, but the focus is studying the effects of government size on output
variability. The standard RBC model implies that income taxes are destabilizing whereas government
purchases are stabilizing. Fatás and Mihov (2001) find a negative correlation between government size

3In general, the debate about the robot tax could be understood as a sub-branch of the economic debate about optimal
capital taxation. Recently, Straub and Werning (2020) revisited the Chamley-Judd result (capital should not be taxed in the
long run) to overturn it. On the one hand, they affirm that the long-run tax on capital is positive and significant for the main
model in Judd (1985) if the intertemporal elasticity of substitution is below one, while it converges to zero at a slow rate
(maybe after centuries of high tax rates) for higher elasticities. On the other hand, they provide conditions under which the
upper bound on capital taxes in Chamley (1986) binds forever implying positive long-run taxes.
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and output volatility both for the OECD countries and across US states. Guo and Harrison (2006) show
that the stabilization effects of government fiscal policy are affected by how hours worked are intro-
duced in the households’ utility function. They found that the results of previous literature are reversed
when preferences are instead convex in hours worked. Here, we adopt a different perspective by ac-
counting for how automation impacts the government size from the tax revenues perspective.

3.3 The model

We consider a model economy with two types of capital: traditional capital and autonomous capital (a
combination of AI and robotics). We propose a simple production function where two different tech-
nologies can coexist simultaneously: a traditional technology that requires traditional physical capital
and labor for production and a new autonomous technology that employs only a new capital (hardware
and artificial intelligence) for production. Whereas traditional technology uses a combination of tradi-
tional capital and labor under constant returns to scale (which implies that marginal productivity for
both inputs is decreasing), the new technology exhibits constant marginal productivity for autonomous
capital, which involves endogenous growth. We consider a representative household that can freely
decide labor time, consumption, and investment decisions in both kinds of capital. The model includes
a government that collects taxes to finance public spending. Five tax rates are considered: a consump-
tion tax, a capital income tax, a labor income tax, and contributions to social security by employers and
employees. The model is specified in discrete time and it is considered a decentralized economy where
households maximize utility in a deterministic intertemporal optimization setting and firms operates in
a perfect competition environment.

3.3.1 The technology

The aggregate production technology is a CES function for traditional technology using capital and
labor nested into another CES function. In this aggregate CES function, new and traditional technology
are substitutes. We define the following aggregate production function to represent this technological
combination:

Yt = [µXυ
t + (1 − µ) Dt

υ]
1
υ (3.1)

where Yt is the final output, Xt represents traditional technology, µ is a distribution parameter for the
traditional productive factors versus the new technology, Dt is the autonomous capital, and υ measures
the substitution between the traditional production technology and the new technology. The elasticity
of substitution between traditional and autonomous technologies is defined as σ = 1/(1 − υ).

The traditional technology is represented by another CES function:

Xt =
[
αKθ

t + (1 − α) Lθ
t

] 1
θ

(3.2)

where Kt is the traditional capital, Lt is labor, α is a distribution parameter of inputs and θ measures
the substitution between traditional capital and labor. The elasticity of substitution is defined as ε =
1/(1 − θ). Empirical evidence suggests that ε < 1 (Chirinko, 2008; Eden and Gaggl, 2018), and that
σ > 1 (DeCanio, 2016; Acemoglu and Restrepo, 2019; Lin and Weise, 2019). Therefore, it is assumed that
0 < ε < 1 < σ < ∞. This implies higher complementarity between traditional capital and labor than
between traditional technology and autonomous capital. That is, autonomous capital is a substitute for
both traditional capital and labor. 4

4For additional information about the characteristics of the production function, see Casas and Torres (2023).
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Firms maximize profits in a competitive environment taken factor prices as given, solving the fol-
lowing static maximization problem at each period:

max Πt = Yt − (1 + τsse
t )WtLt − Rk,tKt − Rd,tDt (3.3)

where Wt is the wage, τsse
t are social security contributions paid by the employer, and Rk,t and Rd,t are

the returns to traditional and autonomous capital, respectively. From the first order conditions of the
firm’s profit maximization problem, we obtain the following marginal productivity of each of the three
productive factors:

Rk,t = αµY1−υ
t Xυ−θ

t Kt
θ−1 (3.4)

(1 + τsse
t )Wt = (1 − α) µY1−υ

t Xυ−θ
t Lt

θ−1 (3.5)

Rd,t = (1 − µ)Y1−υ
t Dt

υ−1 (3.6)

where the Euler Theorem holds, profits are zero and output is distributed among the three productive
factors, given the assumptions of a competitive market and constant returns to scale.

3.3.2 Households

We assume that the utility function of our representative household is as follows:

U(Ct, Lt) = γ log Ct + (1 − γ) log(1 − Lt) (3.7)

where Ct is total consumption and γ is a parameter reflecting the willingness to sacrifice units of con-
sumption in favor of leisure time. Total available time has been normalized to one, so leisure is defined
as 1 − Lt, where 0 < Lt < 1. The representative household satisfies the following budget constraint:

(1 + τc
t )Ct + It = (1 − τl

t − τssw
t )WtLt + (3.8)

(1 − τk
t )(Rk,tKt + Rd,tDt) + τk

t (δkKt + δdDt) + Tt

where I is the total investment in capital, τc
t is a consumption tax, τl

t is labor income tax, τssw
t is employ-

ees’ social security contributions, τk
t is the capital income tax, Tt is a lump-sum transfer, and δk and δd are

depreciation rates for traditional and autonomous capital, respectively. As we assume an unique total
investment instead of specific investment decisions, we have an unique capital accumulation process
presented in the following way:

It = Dt+1 − (1 − δd)Dt + Kt+1 − (1 − δk)Kt (3.9)

The maximization problem faced by the infinity-lived representative household with perfect-foresight
is given by,

max
{Ct,Lt}

∞

∑
t=0

βt [γ log Ct + (1 − γ) log(1 − Lt)] (3.10)

subject to restrictions (4.20) and (4.21), where K0 and D0 are given, and where β is the intertemporal
discount factor.

Equilibrium conditions, representing Euler equations, from the household’s maximization problem
are,

(1 + τc
t )Ct =

γ

1 − γ
(1 − Lt)Wt(1 − τl

t − τssw
t ) (3.11)

1 = β
(1 + τc

t )Ct

(1 + τc
t+1)Ct+1

(
(1 − τk

t+1)(Rk,t+1 − δk) + 1
)

(3.12)

1 = β
(1 + τc

t )Ct

(1 + τc
t+1)Ct+1

(
(1 − τk

t+1)(Rd,t+1 − δd) + 1
)

(3.13)
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representing the optimal labor supply, the investment decision on traditional capital and the investment
decision on autonomous capital, respectively. Notice that these equilibrium conditions establish a direct
relationship between depreciation rates and returns of both traditional and autonomous capital, as net
marginal productivities are equal, such as:

Rd − δd = Rk − δk (3.14)

3.3.3 Government

The government uses tax revenues to finance lump-sum transfers. We assume that the government
balances its budget period-by-period by returning revenues from distortionary taxes to the agents via
lump-sum transfers. Total tax collection is specified as follows:

Tt = τc
t Ct + (τl

t + τssw
t + τsse

t )WtLt + τk
t ((Rk,t − δk)Kt + (Rd,t − δd)Dt) (3.15)

where Tt represents fiscal revenues.

3.4 Calibration

The model is calibrated according to an artificial economy using standard values in the literature. Given
the specification of the model, the combination of traditional and autonomous technologies is a CES
function, where the distribution parameter represents the relative weight of each technology in the
economy. We use this distribution parameter of the CES production function as a free parameter repre-
senting the penetration of autonomous capital in the economy. The autonomous technology adoption
rate, represented by 1 − µ, takes values from 0 to 0.45 , where the maximum value is consistent with the
estimations about the percentage of tasks in the economy that are potentially automatized by leveraging
current technology (Manyika et al., 2017).

As the elasticity of substitution between technologies, σ = 1/(1 − v), involves traditional labor and
capital on one side and autonomous capital on the other one, it results logically to examine elasticities
of substitution lower than the 2.5 estimated by DeCanio (2015). Therefore, we set σ = 2 and then we
provide a sensitivity analysis for the elasticity of substitution in a range from 1 to 5 , which implies
a range of values for v between 0 and 0.8. The range of values selected for the sensitivity analysis of
this parameter is coherent due to the wide range of values used in the literature. For example, while
some authors interpret that robots and labor are perfect substitutes (Acemoglu and Restrepo, 2020a)
and other authors establish a high elasticity of substitution equal to five (Lin and Weise, 2019), Decanio
(2015) estimates this value at 2.5.

The autonomous capital depreciation rate is another key parameter in our model since it determines
the relationship between the (gross) returns of the two types of capital. We fixed it to δd = 0.20 annually,
according to the depreciation rate traditionally assumed for R&D capital. This percentage is reflected in
the EU KLEMS data and has been documented by numerous authors (see, for example, Hall, 2005). This
calibration is close to Lin and Weise (2019), which along with Krusell et al., (2000), set out a quarterly
depreciation of robots at 0.0515. Graetz and Michaels (2018) set a slightly lower robot depreciation rate
of ten percent. Abeliansky and Prettner (2017), following Graetz and Michaels (2018), also assume a
robotic depreciation rate of 10%. This depreciation rate would be higher than the one established by the
International Federation of Robotics (2016), which sets a lifetime horizon of 12 years for robots.

Tax rates are calibrated according to the OECD average (OECD, 2018; OECD, 2019). Tax rates are
fixed to τc = 0.1832, τl = 0.1646, τsse = 0.1589, τssw = 0.0945 and τk = 0.2418 The rest of the parameters
are calibrated as standard in the literature. As we focus on the long-run, the time dimensional parame-
ters of the model are calibrated on an annual basis. Therefore, we fix β = 0.975, γ = 0.4, α = 0.35, δk =
0.06, and ε = 1/(1 − θ) = 0.90, consistent with Chirinko (2008), Eden and Gaggl (2018) and Lin and
Weise (2019).
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Table 3.1 summarizes the benchmark calibration of the parameters of the model and the range of
values for the parameter representing the level of automation of the economy.

TABLE 3.1: Calibrated parameters

Parameter Definition Value
Preferences β Discount factor 0.975

γ Consumption-leisure preference parameter 0.40
Technology α Capital share in the traditional technology 0.35

δk Traditional capital depreciation rate 0.06
δd autonomous capital depreciation rate 0.20
ε Traditional capital-labor elasticity 0.90
σ Traditional-autonomous technologies elasticity 2.00
µ Technologies distribution parameter [0.55-1.00]

Tax rates τc Consumption tax rate 0.1832
τl Labor income tax rate 0.1646

τsse Employer’s social security tax rate 0.1589
τssw Employee’s social security tax rate 0.0945
τk Capital income tax rate 0.2418

3.5 Quantitative results

In this section, we quantitatively measure the implications of automation on the size of the government.
We simulate an increase in automation represented by a decline in the aggregate CES distribution pa-
rameter µ. A value of µ = 1 indicates an economy with no autonomous capital. We compute a sequence
of steady states by reducing the value of this parameter until a value such as labor goes to zero. re-
sulting in a maximum value for the automation rate of 0.45 . Figure 3.1 plots the steady state values
of key variables as a function of the automation rate. For relatively low values of automation (automa-
tion rates below 0.3), steady-state output remains almost constant and even reduces, although some
significant changes are observed in labor and traditional capital. As we can observe, long-run output
increases as the automation rate become higher, once the autonomous capital adoption rate is above
0.3. However, the increase in production is not distributed equally between consumption and invest-
ment. Automation changes the distribution share of consumption and investment to output, decreasing
the consumption-output rate and increasing the investment-output rate, due to the higher depreciation
rate of autonomous capital. Indeed, consumption decreases in the first stages of automation, as more
income must be allocated to investment spending to finance autonomous capital consumption, given
that the depreciation rate of autonomous capital is higher than the depreciation rate of traditional capi-
tal. Again, only for a large enough autonomous capital adoption rate, the increase in output can finance
both consumption and higher investment in the long run. The changes produced in steady-state output,
consumption, and investment are consequences of the substitution among the three production inputs.
Autonomous capital stock increases exponentially while traditional capital stock plots a U-shape, de-
creasing in the first stages of automation and then increasing once the proportion of autonomous capital
is large enough.
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FIGURE 3.1: Steady state values of key macroeconomic variables as a function of automa-
tion
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The most dramatic effect of automation is found in the reaction of labor. Automation reduces work-
ing hours no matter how the rate of penetration of autonomous capital is. 5 Whereas for low values of
automation the negative effects on working hours are relatively small, the substitution effects increase
as automation becomes higher. What is clear from the results shown in Figure 3.1, is that automation
will change the relative importance of inputs in production and hence, the way how income is generated
and distributed in the economy, shifting the tax base from labor to capital. These changes are expected
to have a direct impact on public finance depending on the tax mix. We explore three scenarios: (i) how
specific tax revenues change with automation given the baseline tax mix; (ii) how taxes rates should be
changed to keep fixed tax-specific revenues; and (iii) what should be the capital income tax rate, keeping
fixed the other taxes, to keep the size of the government constant.

3.5.1 Experiment 1: Automation with fixed tax rates

The first experiment consists of computing fiscal revenues to output ratio (total and tax-specific) as a
function of the automation rate keeping fixed the tax rates to the baseline calibration. Results from this
experiment are plotted in Figure 3.2. As we can appreciate, the size of the government in the baseline
calibration would be 42% in a world without autonomous capital (a production function with only labor
and traditional capital). The introduction of autonomous technology pushes down the government size
steadily. When the autonomous capital adoption rate reaches the maximum value of 0.45 , the size of the
government falls to only 11%. This large fall in the total tax revenues to output ratio finds its explanation
in the fall of the revenues to output ratio from all taxes except for the capital income tax. Notice that
even revenues from the consumption tax as a fraction of output decline as a consequence of the required
higher investment rate as automation increases. That is, automation increases the investment-to-output
ratio and decreases the consumption-to-output ratio. In particular, fiscal revenues as a percentage of
output levied by the consumption tax goes down from 15% to 5%.

5Labor represents working hours in our economy model. The decline in working hours provoked by automation can also
be interpreted as a reduction in the workday and not in employment (see Bongers and Molinari, 2020).
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A similar loss of fiscal revenues is found for all payroll taxes on labor income (social security contri-
butions and the labor income tax). The observed decline in labor payroll taxes revenues is even more
dramatic. Collected revenues from the labor tax to output ratio go from around 10% to 1%, and total so-
cial security contributions to output ratio go from around 15% to 2%. Thus, automation would not only
reduce tax revenues from labor but also could call into question the sustainability of the pay-as-you-go
social security scheme. The only tax that contributes to increases in fiscal revenues is the capital income
tax. As we observe in the last row of the figure, the capital income tax revenues to output ratio increases
from 2.7% to 3.3%. This is explained by the increase in the autonomous capital income tax collection to
output ratio that compensates for and exceeds the drop of the traditional capital income tax collection.
However, fiscal revenues from capital income tax represent a small fraction of total fiscal revenues and
cannot compensate for the decline in fiscal revenues from other sources.

FIGURE 3.2: Steady state values for the ratio of tax revenues to output as function of the
autonomous capital adoption rate.
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Two key implications can be obtained from previous results. First, while it is logical that in the face
of an increase in production, total tax collection will be increased by the expansion of the economy,
we find that the automation process causes fiscal revenues to output ratios to collapse. That is, the
expansion of the economy exceeds the expansion of public finance. To a large extent, we could say
that the penetration of the new autonomous technology causes tax revenues from traditional sources
to fall. On the other hand, the expansion of output does not imply equal increases in consumption
and investment, but since the expansion of the economy is driven by the new technology with a high
depreciation rate, more resources are needed to be allocated to investment, causing the ratio of fiscal
revenues from consumption to output to fall as well. Second, the size of the government cannot be
maintained with automation and the current tax mix. This is because output expansion far exceeds
the expansion of public revenues, which are decreasing in relation to the output as the autonomous
capital share increases. This would force the government to increase tax rates parallel to automation.
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Furthermore, automation changes the functional distribution of income increasing the capital share,
which calls for a reform of the tax mix.

FIGURE 3.3: Tax rates as a function of the autonomous capital adoption rate to keep con-
stant specific-fiscal revenues.
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3.5.2 Experiment 2: Automation with fixed tax-specific revenues

One lesson we learn from experiment 1 is that the current government size is not sustainable with the
current tax mix as the automation process progresses. This means that current tax rates should be mod-
ified according to the observed changes in the tax bases. Next, we consider a scenario in which specific
tax rates are changed to keep fixed the tax burden. This counterfactual experiment would indicate how
taxation policy should adapt to the automation process, depending on the changes in the combination
of inputs and how income is generated and spent, in order to keep constant the size of the government.
Estimated tax rates as a function of the automation rate are shown in Figure 3.3. As we can observe, as
automation increases, all tax rates, except the capital income tax rate, should be increased. Specifically,
when the adoption rate of autonomous technology reaches the 38 %,6 the consumption tax rate should
be 0.3764 , the labor income tax rate should be 0.5862 , and the total social security contributions tax
rate should be 0.9024 in order to keep constant the government size. By contrast, the capital income tax
rate should be lower as the accumulation of autonomous capital is fairly enough to keep capital income
constant. In this sense, the policy of fixed tax-specific revenues would deepen the income inequality
increase caused by automation. 7

However, such fiscal policy could be impractical and counterproductive. Indeed, the estimated in-
creases in the tax rates to keep constant fiscal revenues are of a large magnitude, increasing distortions

6This is the maximum value for 1 − µ consistent with the baseline government size with no automation before labor col-
lapses to zero.

7See, for instance, Lankisch et al., (2019) and Jaimovich et al., (2021).
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FIGURE 3.4: Steady state for key aggregate variables as a function of the autonomous cap-
ital adoption rate in a scenario with fixed tax-specific revenues.
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in the economy and causing a negative impact on economic activity. Figure 3.4 plots the steady state
values of the key macroeconomic variables resulting from the previous tax policy. These figures plot
the steady state values for the key variables as a function of the autonomous capital adoption rate and
the new taxes rates needed to keep the size of the government constant. As we can observe, this fiscal
tax policy causes output to decrease. This fall is accompanied by a decrease in consumption, labor, and
traditional capital, while investment and autonomous capital increase before the collapse of labor once
the automation rate is above 35%. Therefore, this fiscal policy aimed to keep constant the share of each
tax revenue is not a solution in the face of automation. By contrast, this tax policy would accelerate the
collapse of the economy (reducing labor to zero) given the higher labor payroll taxes in combination
with a higher consumption tax.

The lesson we can extract from this analysis is that the current tax menu cannot be maintained in
an environment with high automation and it should be accommodated to the new income generation
scenario, where production technology is increasingly dominated by autonomous capital. Likewise,
this analysis reveals some insights into how the advance of automation can be directed by fiscal policy.

3.5.3 Experiment 3: Capital income tax to keep total fiscal revenues fixed

Finally, we study a scenario in which only the capital income tax is modified to compensate for all the
effects of automation on public finance. In this counterfactual experiment, the consumption and labor
income tax rates and the social security contributions rate remain fixed to the baseline calibration values.
This experiment is motivated by previous results. First, automation will transform the combination of
inputs used in the economy where automatic capital will substitute both traditional capital and labor.
In short, automation will increases capital deepening while reducing labor. This changes the functional
distribution of income, reducing the labor share and increasing the capital share. Additionally, automa-
tion would increase the investment-to-output ratio and thus decrease the consumption-to-output rate.
Therefore, capital income would be transformed into the main tax base replacing both labor income and
consumption tax bases.
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Previous studies have already explored reasons for the optimality of differential capital taxation. In
particular, Slavik and Yazici (2014), setting the focus on the marginal tax rates on returns to capital assets,
conclude that it is optimal to tax equipment capital at a higher rate than structures. In a quantitative
exercise, these authors state that the optimal tax rate on equipment capital is at least 27 percentage points
higher than the optimal tax rate on structure capital. Contrary to this idea, we can also find authors
defending that capital should not be taxed (Chari et al., 2020). Indeed, one alternative would be to
consider two specific taxes for traditional and autonomous capital. However, this would be difficult for
practical implementation, as first, we should have a clear definition of what traditional and autonomous
capital are, and second, how to distinguish between income produced by each capital. Instead, in this
experiment, we maintain the assumption that the capital income tax rate is the same for all types of
capital.

Figure 3.5 plots the estimated capital income tax rate as a function of automation that would be
required to keep constant the government size. As we can observe, the value of this tax rapidly increases
as autonomous technology gains weight in aggregate production. We find an S-shaped relationship
between capital tax and automation, resulting in considerably high values for the tax rate. For the
maximum automatic capital adoption rate used in the simulation, the tax rate on capital income would
be around 80%. At a first sight, this is a substantial value. However, it is also true that capital income
becomes the main tax base of the economy as a consequence of automation.

We now turn to study the impact of this capital income tax rate on the rest of the economy. Figure 3.6
plots the key steady-state values of the economy as a function of the new capital income tax that keeps
fixed the government size. The consequences of this increasing capital income tax rate are remarkable
and different from the previous scenario. In particular, under the implementation of this capital income
tax rate policy, output, investment, and consumption describe U shapes as autonomous technology
advances and autonomous capital stock increases while traditional capital decrease. This progressive
higher capital tax rate reduces capital deepening in the economy. Indeed, the steady-state output is
reduced in the initial stages of automation. However, even with an increasing capital income tax rate,
autonomous capital is accumulated at a high rate. On the other hand, labor displacement is significantly
less intensive under this fiscal scenario compared to the previous one. The increasing capital income tax
reduces net income from capital, slowing the substitution of labor for autonomous capital.

It is interesting to contrast the results plotted in Figure 3.6 with Figure 3.4 . In both cases, the size of
the government is kept constant for any level of autonomous capital adoption and the only difference is
in the tax policy regime. Whereas in Figure 3.6 the size of the government is kept constant by changing
only the capital income tax rate, whereas in Figure 3.4 all tax rates are changed by keeping constant fiscal
revenues from each source. Differences in both fiscal policy scenarios are significant. In the first case,
traditional capital and labor will be substituted by autonomous capital, but as the automation process
increases, the effect on output, investment, and consumption turns out to be positive for high values
of automation. By contrast, changing all tax rates would lead to a collapse of the economy when the
automation capital adoption rate is close to 40%. What these results show is that it turns out to be less
distorting increasing the capital income tax to keep fixed the size of the government, an alternative fiscal
policy that keeps constant revenues from each tax.

3.6 Sensitivity analysis

In this section, we carry out a sensitivity analysis regarding two key aspects of the automation process.
On the one hand, due to the lack of consensus and empirical evidence on the elasticity of substitution
between traditional technology and new technology, we repeat the simulations for a range of values of
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FIGURE 3.5: Capital income tax rate to keep constant fiscal revenues as function of the
autonomous capital adoption rate.
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FIGURE 3.6: Steady state values as function of the autonomous capital adoption rate in a
scenario with a capital income tax rate to keep fixed the government size.
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the elasticity of substitution from 1 to 5 . On the other hand, we repeat the simulation using an alterna-
tive specification of the production function widely used in the literature. This alternative specification
assumes that this new technology replaces human labor, contrary to the model presented in this chapter
which assumes that autonomous capital is a substitute for both traditional capital and labor.
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3.6.1 Elasticity of substitution between technologies

First, we study the sensitivity of the results to alternative values of the elasticity of substitution between
traditional and autonomous technologies. In Figure 3.7, we present all taxes collection as a percentage
of output for three alternative values of the elasticity of substitution (1,2, and 5). We can observe that
differences are small for low values of the autonomous capital adoption rate. However, for higher values
of automation, results are more sensitive to the elasticity of substitution. As the elasticity of substitution
increases, automation has a greater impact, accelerating the decline of the government size. For all three
elasticities values investigated we find a negative relationship between automation and the government
size.

FIGURE 3.7: Fiscal revenues as a percentage of GDP as function of the autonomous capi-
tal adoption rate and the elasticity of substitution between traditional technology and au-

tonomous technology.
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Next, we carried out a sensitivity analysis on experiment 2 to investigate how sensitive the estimated
tax rates required to keep constant fiscal revenues depending on the elasticity of substitution. Results
from this sensitivity analysis are plotted in Figure 3.8 . We find that the elasticity of substitution has
an impact on the required tax rates, but in all cases, tax rates must be changed in the same direction.
The consumption, labor income, and social security contributions tax rates increase with automation,
whereas the capital income tax rate reduces with automation.

Estimated tax rates depend on the automation rate. For low values of automation (below an automa-
tion adoption rate of 22.5% ), tax rates are almost constant for the highest value of elasticity. However,
this effect reversed for values of the automation rate above 22.5%. In this case, the greater the elasticity of
substitution between technologies is, the greater the negative impact of automation on the government
size and thus a larger increase in the tax rates is needed.
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FIGURE 3.8: Tax rates to keep constant fiscal revenues as function of the autonomous capi-
tal adoption rate and the elasticity of substitution between technology.
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Finally, we repeat experiment 3 for the selected values of the elasticity of substitution. Figure 3.9
plots the implicit capital income tax rate required to keep fixed total fiscal revenues as a function of the
elasticity of substitution. For the three values of elasticity, we find an increasing trend in the tax rate,
with similar values. For an automation rate of 40%, the capital income tax rate should be in a range of
0.65 to 0.80 , for the lower and higher elasticity of substitution, respectively.

3.6.2 Alternative technology

The model used in this chapter assumes that robots and AI are a new type of capital (autonomous capi-
tal) that can substitute both traditional capital and labor. This assumption is based on the characteristics
of new autonomous capital, a combination of robots and AI that can perform tasks in an autonomous
way. In this section, we repeat the previous analysis using the standard production function specifica-
tion with robots widely used in the literature. This specification consists of assuming that robots replace
workers while complementing traditional capital units. This is the technology specification assumed by,
for example, Eden and Gaggl (2018), Berg et al. (2018), and Lin and Weise (2019). Under this assumption,
the production function would be as follows:

Yt = [µXυ
t + (1 − µ)Kt

υ]
1
υ (3.16)

where Yt is the final output, µ is the CES distribution parameter, Xt is a composite of human labor and
robots, Kt is the traditional capital, and υ measures the substitution between the traditional capital and
labor -human or robotic-. The elasticity of substitution between traditional capital and labor -human or
robotic- is defined as σ = 1/(1− υ). Xt represents labor tasks performed by autonomous capital and/or
human labor:

Xt =
[
αDθ

t + (1 − α) Lθ
t

] 1
θ

(3.17)
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FIGURE 3.9: Capital income tax rate to keep constant fiscal revenues as function of the
autonomous capital adoption rate and the elasticity of substitution.
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where Dt is the autonomous capital, Lt is labor, α is a distribution parameter of inputs and θ determines
the elasticity substitution between robotic and human labor. The elasticity of substitution is defined
as ε = 1/(1 − θ). For simulating this technology, we assume that the parameter σ takes a value of
0.90 while ε takes values between 1 and 5 . Similarly, the parameter µ takes a value of 0.65 while α,
the new adoption rate, takes values from 0 to 0.45 , as in the previous simulation. Using this new
production function, we repeat the analysis carried out previously to check how sensitive are results to
an alternative specification of the technology.

Figure 3.10 plots the relationship between fiscal revenues and the automation rate. It can be observed
that the results from the production function specification are almost equal to the ones obtained from the
baseline model. That is, the two production functions predict the same relationship between automation
and the size of the government; a drop in fiscal revenues as a percentage of output, except for the
revenues from the capital income tax. The main difference is found regarding the traditional capital
income tax revenues which remain constant with this alternative specification.

Again, the repetition of experiment 2 leads to similar results (Figure 3.11). As a consequence of
automation, consumption and payroll tax rates should be increased to keep fixed fiscal revenues from
these taxes, whereas the capital income tax would be reduced. Comparing Figure 3.11 with Figure 3.3,
we find that required changes in tax rates are slightly less sensitive to automation.

Finally, we repeat experiment 3 using this alternative production function specification. The esti-
mated capital income tax required to keep constant the size of the government as a function of the
automation rate is presented in Figure 3.12. We find a similar relationship between the automation rate
and the tax rate to the one found in the previous analysis. Estimated values for the tax rate are slightly
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FIGURE 3.10: Fiscal revenues as a function of the autonomous capital adoption rate. Alter-
native production function specification.
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FIGURE 3.11: Tax rates to keep constant fiscal revenues as a function of the autonomous
capital adoption rate. Alternative production function specification.
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lower than the estimated using the model presented in the chapter but of similar magnitude. For an
automation rate of 0.45%, the required capital income tax rate would be around 0.72, compared to a tax
rate of 0.77 in the baseline model. Therefore, we conclude that the results of the simulation are robust to
the particular specification of the production function.
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FIGURE 3.12: Capital income tax rate to keep constant fiscal revenues as a function of the
autonomous capital adoption rate. Alternative production function specification.
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3.7 Concluding remarks

Recent advances in robotization and AI open a new era for humankind by introducing a disruptive
technology with dramatic consequences on the economy. This chapter focuses on the implications of
automation for the size of the government, measured as the tax revenues to output ratio. We find that
automation significantly affects public finance given its impact on the combination of inputs used for
production activities. Automation will have positive effects on the economy but transform production
into a more capital-intensive technology. Given that current tax systems are based heavily on taxing
labor income, the substitution of labor by the new autonomous capital will have a dramatic impact on
fiscal revenues.

Under the current tax mix scenario, automation will expand final output, with a positive impact
on all macroeconomic variables, except labor. We find three important results. First, the steady-state
ratio of consumption to output decreases with automation. This is because automation implies a higher
autonomous capital deepening with a higher depreciation rate compared to traditional capital assets,
resulting in a higher steady-state investment ratio. Therefore, more resources are needed to be devoted
to replacing depreciated autonomous capital which reduces the ratio of consumption to output. Second,
total fiscal revenues increase with automation given the expansion of the economy. Nonetheless, the
relative contribution of the different sources of fiscal income changes. The proportion of fiscal revenues
from capital increases, whereas the proportion of fiscal revenues from labor income and consumption
declines. However, the size of the government, measured as the steady-state ratio of fiscal revenues to
output (assumed to be equal to the ratio of government spending to output), declines with automation.

To explore the consequences of automation on the size of the government we proceed as follows.
First, we analyze the evolution of fiscal revenues as a fraction of output from each tax as a function
of automation, keeping the current tax mix constant. The automation process affects the composition
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of fiscal revenues, changing the contribution shares of taxes. In particular, the labor tax and the social
security contributions progressively diminish their contribution shares in favor of taxing capital. The
most important result is that the size of the government decreases with automation. Thus, automation
will be an important source of deterioration of public finance stopping the observed trend in the last
century of a steady increase in the size of governments in advanced economies.

Given the previous results, we proceed to study how tax rates should be changed to keep constant
fiscal revenues. We conduct this experiment tax by tax. We find that all tax rates should be significantly
increased, except the capital income tax. However, estimated tax rates turn out to be extremely high,
increasing distortions on the economy. Moreover, this new tax policy would eliminate the positive im-
pact of automation on the economy, even accelerating the decline in labor as distortions on the optimal
behavior of households would also increase. In sum, the rise in tax rates to compensate for the effects
of automation on the fiscal revenues-to-output ratio is not a practical option, and a redesign of the tax
system is compulsory.

In light of the aforementioned results, we conduct a third experiment which consists in estimating
the capital income tax rate that keeps fixed total fiscal revenues. If capital is the most important input
producing income, the tax policy should accommodate automation by increasing capital income taxes.
We find that the capital income tax rate would reach a value close to 80% for an automation rate of 45%.
This fiscal policy would have less distortionary effects on the economy mitigating the negative effects
of automation on labor, although would cancel out the positive effect of automation on final output.

A sensitivity analysis reveals that previous results are robust to different values of the elasticity of
substitution between technologies, and to alternative specifications of the production technology.

In summary, two main results are derived from this chapter. First, automation without deep fiscal
reform will stop the observed increasing trend in the government size in the economy. Second, automa-
tion will put at risk social security sustainability in pay-as-you-go systems. These results contribute new
evidence to the debate among scholars about the necessity to carry out profound tax policy reforms to
accommodate the impact of automation.
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Chapter 4

Social security contributions and
autonomous capital taxation

4.1 Introduction

Pay-as-you-go social security systems face a number of challenges. Social security system is viable if
the volume of active population increases at a higher rate than the number of pensioners does and if, in
addition, active population is employed by the productive system (Kitao, 2014). Nowadays, both pre-
requisites for social security sustainability are jeopardized. On the one hand, demographic shifts turns
the scenario to a volume of active population increasing at a lower rate than the number of pensioners.
On the other hand, technological innovations driven by automation biased jeopardizes the fact that the
active population is employed by the productive system.

The potential impact of new technologies such as Artificial Inteligence (AI) and robotics is in the
frontline of economic debate. The discussion about the implications of new technological change has
spread worldwide. Some studies have warned of the new autonomous technology potential to reduce
the workforce and cause distortions in labor markets. In addition, this disruptive technological change
comes at a time of demographic changes towards an ageing population1 that threatens the survival of
the pay-as-you-go pension system so that governments are extending statutory retirement ages (Euro-
pean Commission, 2021).

In this line, the literature has highlighted that the social security is not sustainable as it is, transmit-
ting the necessity to restore the balance, either by reducing benefits or by raising taxes (Kitao, 2014).2

Moreover, it has been argued that the actual demographic and technological shifts interact, with aging
leading to greater automation levels and to a more intensive use and development of robots (Acemoglu
and Restrepo, 2022), indicating that lower population growth and population ageing increase automa-
tion and are detrimental to economic growth in the medium run, predicting a fall in output per capita
growth, an increase in automation, and a fall in the labour income share and in interest rates (Basso and
Jimeno, 2021).

Just as it has been stressed that demographic change drives automation, it has also been highlighted
that the current tax system favors the substitution of labor for capital. Then, although the preference
for robots over human workers may arise out uniquely of the general preference for capital over labor,
workers not only have to compete with rising efficiencies of robots, but also with tax policies incen-
tivizing automation, since most tax systems are designed to tax labor rather than capital encouraging
automation by providing employers with preferential tax treatment for robot workers, and in addition,
capital taxes have been declining as a share of the tax base (Abbott and Bogenschneider, 2018; Huettinger
and Boyd, 2020). The underlying reason for the bias towards labor of tax systems is the consideration

1Kitao (2014), following Bell and Miller (2005), highlights that life expectancy has grown dramatically during last decades
to 77 years in 2000 and it is projected to reach 85 years by the end of the century, while the dependency ratio is projected to
rise rapidly reaching 38% in 2050 and 45% in 2100.

2For instance, Blanco-Enmienda and Ruiz-García (2017) analyze the social security sustainability of the Spanish economy
to conclude the need for structural reforms of the system so as to make it more sustainable in the long term.
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of labor taxes as the more efficient form of taxation, while considering that capital is more mobile than
workers involving many jurisdictions and resulting in a sharp downward trend of the capital tax rates.

This idea of capital-enhancing tax systems has been extensively supported by the literature. For
instance, it has been remarked that investments in capital are generally taxed more favorably than labor
income (Soled and Thomas, 2018), with the tax law currently undertaxing capital income and overtaxing
labor income, encouraging the non-optimal use of robots by granting tax preferences to capital income,
which creates undesirable economic inefficiencies and deadweight losses (Mazur, 2019), thereby causing
the US tax code to aggressively subsidize the use of equipment and taxes the employment of labor
leading to potentially excessive automation induced by tax distortions beyond what is socially desirable
(Acemoglu and Restrepo, 2019; Acemoglu et al., 2020), by distorting firms’ demand for labor versus
capital in the form of labor-saving technology to the degree that law effectively taxes the employment
of human labor (Estlund, 2018).

The aforementioned interaction points between tax systems, demographic shifts and technological
changes have pushed scholars to consider that a full reconsideration of the fiscal and transfer systems
may be required once the economic implications of robotics and AI are clearer (Jimeno, 2019), highlight-
ing that the new wave of technological changes may bring a decline in labour shares, at a time in which
conventional social policies, which mostly channelled taxes from the young to the old, will require
more resources. This necessity for a full reconsideration of the fiscal and transfer systems has reserved
an special spot for the idea of the robot tax, defined as any tax measure that specifically increases the tax
burden in direct connection with the ownership, use or supply of a robotic system and/or intelligent
system (Popovič and Sábo, 2022), or simply as essentially a tax on the capital employed by the business
that utilizes the robot (Mazur, 2019).

This chapter explores the most efficient alternative to tax autonomous capital in order to sustain the
social security contributions to output ratio. Specifically, we consider three alternative schemes -taxing
robot income, taxing robot investment, and taxing robots as humans- finding that taxing robots as hu-
mans is the alternative causing less disruptions in the economy. In addition, we analyze the implications
of autonomous capital taxation for the functional distribution of income.

To the best of our knowledge, this is the first rigorous contribution considering the autonomous cap-
ital taxation as a cantilever for social security in a general equilibrium analysis framework. Previously,
literature has considered, separately and briefly, alternative policies for social security sustainability
and alternative implementations of autonomous capital taxation. For instance, regarding social secu-
rity, Kitao (2014) propose four options to make the social security self-financed and sustainable in light
of the demographic aging: increase payroll taxes by 6 percentage points, reduce replacement rates by
one-third, raise the normal retirement age to 73, or means-test the benefits and reduce them in income.
Moreover, while other papers have considered the robot tax as a tool to narrow down wage inequality
(Zhang, 2019; Guerreiro et al., 2022) or increase welfare (Gasteiger and Prettner, 2022; Thuemmel, 2022),
the optimal way to tax robots in order to sustain social security funds in an scenario of an increasingly
aging population with increasing labor market automation remained unexplored.

The rest of the chapter is organized as follows. Section 2 presents a review of the related literature.
Section 3 details the model. Section 4 collects the calibration. Section 5 depicts the results, and section 6
summarizes the main conclusions.

4.2 Related literature

This chapter is related to the robot tax literature and, by extension, with all the literature about the
autonomous capital technological change. This literature presents a multilevel analysis of the impact
of the new generation automation technologies in the workforce. From a macroeconomic perspective,
Acemoglu and Restrepo (2020a) conclude in an empirical analysis that one more robot per thousand
workers reduces the employment-to-population ratio by 0.2% and wages by 0.42%. At occupation level,
Frey and Osborne (2017) brought controversial to the debate by affirming that 47% of american jobs were
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at high automation risk.3 At the task level, Manyika et al. (2017) have analyzed the tasks composition of
820 occupations to conclude that, while 60% of all occupations have at least 30% technically automatable
activities, less than 5% of occupations consist of activities that are 100% automatable.

As noticeable, researchers in the literature related to the fourth industrial revolution are divided
between those who argue that the current industrial revolution is nothing different from previous ones
and those who think that this technological revolution is disruptively different from all previous ones.
Specifically, between the occupations approach and the tasks approach, there is a relevant difference
between assuming that entire occupations (composed of several tasks) are replaceable or only certain
tasks can be substituted.

Dengler and Matthes (2018), comparing these two assumptions, find that approximately 47% of Ger-
man employees experience an automation risk if one assumes that entire occupations are replaceable,
while only 15% of German jobs are at risk when assuming that only certain tasks can be substituted.
This last estimation downsizing the share of jobs at high computerization risk provided by Frey and
Osborne (2017) is closer to the one offered by Arntz et al. (2016 2017) arguing that only 9% of OECD
jobs suffer from high automation risk. Abeliansky et al. (2020), offering a range of values for the dis-
placement of employment, estimate that industrial robots will replace 37.9 million workers in 2030 in a
high-displacement scenario and 12.2 million workers in a low-displacement scenario, with manufactur-
ing workers being the most vulnerable.

Gomes and Pereira (2020) highlight that the current wave of innovation has implications that escape
conventional economic thinking, remarking that the evaluation and prediction of what the new phe-
nomena brings is fundamental to design policies that prevent income inequality to widen and growth
to slow down. By building an analytical framework in which they consider three groups of workers
-manual, routine and creative- with different substitutability degree with autonomous technologies and
an unemployment insurance paid by workers, these authors conclude that there is a winning group in
robotization process, the robot owners, and two losing groups: those who eventually become unem-
ployed due to technological progress and those who have to pay taxes to compensate jobless workers.

Why is this technological revolution different and should the bundle of new technologies be fiscally
treated differently? A representative fact of the potential impact on society of the new autonomous tech-
nologies is that art may no longer be an exclusively human thing. In fact, there is already autonomous
technology capable of writing novels, and movie scripts. This potential to perform creative tasks and
not just routine tasks with low training requirements makes experts estimate that in about 120 years this
technology will surpass humans in all tasks (Grace et al., 2018).

Although some recent contributions point to the labor-friendly side of AI, we must bear in mind
that we are considering a practically new born technology. Then, it results logical that at the AI current
development state, AI-related job vacancies are rapidly growing (Acemoglu et al., 2022), the demand
for AI skills is increasing (Alekseeva et al., 2021) and AI patents have a positive and significant impact
in employment (Damioli et al., 2022; Yang, 2022). However, these recent evidences presenting AI as a
labor-enhancing transformative technology is compatible with a prediction of labor substitution by AI
once this technology fully spreads through the economy reaching its maturity state.

As a concrete example, we can consider the case of "poetry generation" (Linardaki, 2022). While
currently AI can be an useful tool to inspire and support students who engage in the poetry writing
process (Kangasharju et al., 2022), AI also shows the potential ability to autonomously elaborate poems
that can not be distinguished to the ones written by humans (Kobis and Mossink, 2021). Then, we can
conclude that AI can be an useful opportunity of complementary capital for writers in the short-run,
while being an underlying threat of substitute capital for these same writers in the long term.

Although a lot of ink has been spilled on the possibility of implementing a robot tax, scientifically
rigorous works that analyze this issue using mathematical modeling along with precise theoretical anal-
ysis for the possible taxation of new technologies and the formation of a new tax code are scarce in the

3The approach based on task- and occupation-specific measures of technological impacts has providen measures for Ma-
chine Learning suitability (Brynjolfsson et al. 2018), AI advances (Felten et al. 2018), AI progress (Felten et al. 2019), AI impacts
(Webb 2020), AI exposure (Felten et al. 2021), and Language Modelers exposure (Felten et al. 2023).
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literature. Intimately related with our work, we can consider recent contributions proposing alternative
analysis for autonomous capital taxation.

Specifically, Zhang (2019) embeds the use of robots within the specific-factor framework in order to
study how automation affects the skilled-unskilled wage gap and discern the need to tax robots in this
regard, concluding that a tax on robots unambiguously narrow down the wage gap. Thuemmel (2022)
defends that it is optimal to distort robot adoption by arguing that the robot tax (or subsidy) exploits
general-equilibrium effects to compress wages, which reduces income-tax distortions of labor supply,
thereby raising welfare. Gasteiger and Prettner (2022) analyze the effect of automation in the long-run
growth by using the overlapping generations framework, arguing that a robot tax has the potential to
raise per capita output and welfare at the steady state. Guerreiro et al. (2022) argue that it is optimal
to tax robots in order to reduce income inequality while the current generations of routine workers are
active in the workforce. Prettner and Strulik (2020) present a model considering a robot tax as an ad-
valorem tax on machine input in production, predicting that growth, education, R&D, welfare, and even
net income of high-skilled workers, decline with the robot tax rate.

Amid the speculation, other authors have rejected the idea of a tax on robots, highlighting potential
negative effects of it or the difficulty to implement it. Mazur (2019) argues that the robot tax could
bring unintended consequences, such as limiting innovation, and advocates rebalancing tax systems so
that capital income and labor income are taxed in parity. In this line, Fleming (2019) argues that the
discussion should focus on the socioeconomic and organizational dynamics that integrate and guide
computational intelligence instead of focusing on the idea of a "robot tax" when proposing solutions
that can improve industrial democracy and employee well-being.

As alternative fiscal policies close to the idea of the robot tax, the appearance of the generation of
autonomous technologies of the fourth industrial revolution has given momentum to the consideration
of an Universal Basic Income in the advanced countries (Hoynes and Rothstein, 2019), along with a
revival of the consideration of the negative income tax (Friedman, 1962) and the debate on optimal
income taxes (Mirrlees, 1971). Nevertheless, other scholar have suggested that it may be difficult to fight
inequality by a universal basic income if growth becomes very much dependent on robot-technology,
since the policy would reduce growth substantially (Nomaler and Verspagen, 2020).

4.3 The model

This section presents the model specifying two separated technological frameworks, the households’
maximization problem and the government’s budget. As technological frameworks, we consider the
most widely extended approach in the literature arguing that new autonomous capital exclusively re-
places human labor and the approach exposed in Casas and Torres (2023) arguing that new autonomous
capital replaces both human labor and traditional capital.

As sources of government financing, the model includes traditional taxes from the current tax menu
and three alternatives for autonomous capital taxation. These three alternatives are: an autonomous
capital income tax, a VAT over investment in autonomous capital, and a social security tax paid by the
employers of autonomous capital. Korinek (2020) remarks that economists’ framework for designing
tax systems will require some fundamental rethinking in the Age of AI, arguing that there are strong
economic efficiency reasons to stop taxing human labor, even before labor is fully redundant. According
to Abbott and Bogenschneider (2018), as a matter of taxation, automated workers represent a type of
capital investment, and capital income is currently taxed at much lower rates than labor income. Tax
incentives to purchase capital assets are likely to result in an overinvestment in automation (Mazur,
2019) in a sense that some scholars advocate for an active and dynamic robot tax in order to dampen the
(bursty) rate of unemployment that the automation process may generate (Vermeulen et al., 2020). 4

4See Hemel (2020) for a discussion of the arguments for and against robot taxes.
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In order to implement the robot tax, different approaches have been proposed in the literature. For
instance, Vishnevsky and Chekina (2018) highlight three main approaches to solving emerging prob-
lems of taxation: extended tax coverage of new cyber-physical technologies and products of their use;
replacement of digital transactions and shortfalls in revenues by objects of taxation in the form of tangi-
ble assets and people; the construction of a new tax space with smart taxes based on realtime principles,
smart contracts and Big Data. Oberson (2019) propose three measures: granting a legal personality to
robots in order to give them an electronic ability to pay for tax purposes; imputing income to robots in
order to charge levied on this "salary"; and the application of VAT on robots’ activities. Abbott and Bo-
genschneider (2018) suggest five options for tax reform: disallow corporate income tax deductions for
investments in automation; impose a federal “automation tax”; allow accelerated deductions for future
wage expenses; extend the federal self-employment tax to corporations; and increase the corporate tax
rate.

4.3.1 Technologies

This section proposes 2 alternative technologies to collect the inclusion of autonomous capital in the
economy.

Technology A

As the first technology proposition, we consider the most widely used specification to analyze the im-
pact of new technologies (AI and robots) on the economy. This specification consists of assuming that
robots only replace workers while complementing traditional capital units. This is the technology as-
sumed by, for example, Eden and Gaggl (2018), Berg et al. (2018), and Lin and Weise (2019). Then, the
production function would be as follows:

Yt =

[
θX

ρ−1
ρ

t + (1 − θ)Kt
ρ−1

ρ

] ρ
ρ−1

(4.1)

where Yt is the final output, θ is a distribution parameter, Kt is the tradition capital, and ρ measures the
elasticity of substitution between traditional capital and labor -human or robotic. Xt represents collects
labor tasks performed by autonomous capital and/or human labor:

Xt =

[
ϕD

υ−1
υ

t + (1 − ϕ) L
υ−1

υ
t

] υ
υ−1

(4.2)

where Dt is the autonomous capital, Lt is labor, ϕ is a distribution parameter of inputs and υ measures
the elasticity of substitution between autonomous capital and human labor. 5

Firms maximize profits in a competitive environment taken factor prices as given, solving the fol-
lowing static maximization problem at each period:

max Πt = Yt − (1 + τsse
t )WtLt − Rk,tKt − (1 + τssz

t )Rd,tDt (4.3)

Where τsse
t and τssz are social security contributions paid by the employer and robots respectively.

From the first order conditions of the firm’s profit maximization problem, we obtain the following
marginal productivity of each of the three productive factors:

(1 + τssz
t )Rd,t = ϕθY

1
ρ

t X
ρ−1

ρ − υ−1
υ

t D− 1
υ

t (4.4)

5Note that if the parameter ϕ reach a value of 1 we would say that the autonomous capital can replace humans in all tasks.
However if this parameter only reaches a certain percentage of tasks matching the currently automatable tasks it would be an
equivalent approach to model robots as substitutes of only routine tasks separated from creative non-automatable tasks (see,
for instance, Berg et al., 2018).
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(1 + τsse
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t K
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ρ

t (4.6)

where the Euler Theorem holds, profits are zero and output is distributed among the three productive
factors, given the assumptions of a competitive market and constant returns to scale. From the above
first order conditions, we find out that the functional distribution of gross income for the three factors
resulting under this technological specification is:
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Technology B

The aggregate production technology is a CES function for traditional technology using capital and
labor nested into another CES function. In this function, new and traditional technology are substitutes.
We define the following aggregate production function to represent these technological combinations:

Yt =

[
µD

σ−1
σ

t + (1 − µ) X
σ−1

σ
t

] σ
σ−1

(4.10)

where Yt is the final output, Xt represents traditional technology, µ is a distribution parameter for the
traditional productive factors versus the new technology, Dt is the autonomous capital, and σ measures
the elasticity of substitution between traditional and autonomous technologies.

The traditional technology is represented by another CES function:

Xt =

[
αK

ε−1
ε

t + (1 − α) L
ε−1

ε
t

] ε
ε−1

(4.11)

where Kt is the traditional capital, Lt is labor, α is a distribution parameter of inputs and ε measures
the elasticity of substitution between traditional capital and labor. Empirical evidence suggests that
ε < 1 (Chirinko, 2008; Eden and Gaggl, 2018), and that σ > 1 (DeCanio, 2016; Acemoglu and Restrepo,
2020a; Lin and Weise, 2019). Therefore, it is assumed that 0 < ε < 1 < σ < ∞. This implies higher
complementarity between traditional capital and labor than between traditional technology and the
autonomous capital. That is, autonomous capital is a substitute for both traditional capital and labor.6

Again, firms maximize profits in a competitive environment taken factor prices as given, solving the
following static maximization problem at each period:

max Πt = Yt − (1 + τsse
t )WtLt − Rk,tKt − (1 + τssz

t )Rd,tDt (4.12)

From the first order conditions of the firm’s profit maximization problem, we obtain the following
marginal productivity of each of the three productive factors:

Rk,t = α (1 − µ)Y
1
σ

t X
σ−1

σ − ε−1
ε

t K− 1
ε

t (4.13)

6For more information about the characteristics of the production function, see Casas and Torres (2023)
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where the Euler Theorem holds, profits are zero and output is distributed among the three productive
factors, given the assumptions of a competitive market and constant returns to scale. From the above
first order conditions, we find out that the functional distribution of gross income for the three factors
resulting under this technological specification is:

Sl,t =
WtLt

Yt
=

(1 − α) (1 − µ)Y
1−σ

σ
t X

σ−1
σ − ε−1

ε
t L

ε−1
ε

t
1 + τsse

t
(4.16)

Sk,t =
Rk,tKt

Yt
= α (1 − µ)Y

1−σ
σ

t X
σ−1

σ − ε−1
ε

t K
ε−1

ε
t (4.17)

Sd,t =
Rd,tDt

Yt
=

µY
1−σ

σ
t D

σ−1
σ

t
1 + τssz

t
(4.18)

4.3.2 Households

The model assumes that the utility function of the representative household is as follows:

U(Ct, Lt) = γlog(Ct) + (1 − γ)log(1 − Lt) (4.19)

where Ct is total consumption and γ is a parameter reflecting the willingness to sacrifice units of con-
sumption in favor of leisure time. Total available time has been normalized to one, so leisure is defined
as 1 − Lt, where 0 ≤ Lt < 1. The representative household satisfies the following budget constraint:

(1 + τc
t )Ct + Ik,t + (1 + τ Id

t )Id,t =
(1 − τl

t − τssw
t )WtLt + (1 − τk

t )Rk,tKt + (1 − τk
t − τd

t )Rd,tDt + τk
t δkKt + (τk

t + τd
t )δdDt + Tt

(4.20)

where Ik is investment in traditional capital, Id is investment in autonomous capital, τ Id is a VAT over
autonomous capital investment,7 τk is the general tax on capital income and τd is the tax on autonomous
capital income.8 As we distinguish between traditional and autonomous capital investments, we have
two capital accumulation processes presented in the following way:

Dt+1 = (1 − δd)Dt + Id,t (4.21)

Kt+1 = (1 − δk)Kt + Ik,t (4.22)

where 0 < δd < 1 is the depreciation rate of AI and robotics, and 0 < δk < 1 is the traditional capital
depreciation rate. For the sake of simplicity, we assume a linear accumulation capitals. We assume
δd > δk, therefore, in equilibrium, the marginal productivity of autonomous capital must be higher than
the one corresponding to traditional capital.

The maximization problem faced by the infinity-lived representative household with perfect-foresight
is given by,

max
{Ct,Lt}

∞

∑
t=0

βt [γlnCt + (1 − γ) ln(1 − Lt)] (4.23)

7Korinek (2020) states that we should refrain from taxing the robot as a physical vessel but should tax the design of the
robot and the programs that are running on it because those are information goods that generate rents.

8We specify the tax on autonomous capital income symmetrically respect to the traditional capital tax, so the owners are
able to deduct the cost. This is an important aspect since accelerated depreciation for capital investments allows firms to
deduct the cost of their robots faster than they could deduct the wage of the payroll of the workers they replace (Porter, 2019).

Universidad Internacional de Andalucía, 2023



72 Chapter 4. Social security contributions and autonomous capital taxation

subject to restrictions (4.20), (4.21) and (4.22), where K0 and D0 are given, and where β is the intertem-
poral discount factor.

Equilibrium conditions, representing Euler equations, from the household’s maximization problem
are,

(1 + τc
t )Ct =

γ

1 − γ
(1 − Lt)Wt(1 − τl

t − τssw
t ) (4.24)

1 = β
(1 + τc

t )Ct

(1 + τc
t+1)Ct+1

(
(1 − τk

t+1)(Rk,t+1 − δk) + 1
)

(4.25)

1 = β
(1 + τc

t )Ct

(1 + τc
t+1)Ct+1

(
(1 − τk

t+1 − τd
t+1)(Rd,t+1 − δd) + 1 + τ Id

t+1(1 − δd)
)

1 + τ Id
t

(4.26)

making reference to optimal labor supply, investment decision on traditional capital and investment
decision on autonomous capital, respectively. Optimal trajectories for the variables in the long-run
are fully characterize by these three equilibrium conditions together with initial conditions, and the
following transversality conditions for each type of capital:

lim
t→∞

βtλtKt+1 = 0 (4.27)

lim
t→∞

βtλtDt+1 = 0 (4.28)

where λ is the Lagrange’s multiplier, shadow price of consumption.
In the model without taxes, considered in Casas and Torres (2023), there is a direct relationship

between depreciation rates and returns of both traditional and autonomous capital, as net marginal
productivities are equal: Rd − δd = Rk − δk = 1

β − 1. If we consider a common capital tax for both tra-
ditional and autonomous capital, this connection between net capitals marginal productivities remains.
However, the introduction of specific taxation to autonomous techonology breaks the equality between
the net marginal productivities of traditional and autonomous capital. In that case, the net marginal
productivity of autonomous capital in steady state would be affected by both the VAT on autonomous
capital investment and the robot income tax:

Rd − δd =

1
β − 1 + τ Id( 1

β − 1 + δd)

1 − τk − τd
(4.29)

As a consequence, we can derive expressions reflecting how the VAT on autonomous capital in-
vestment and the robot income tax affect the relation between the net marginal productivities of both
capitals, starting from the following identities:

1
β
− 1 = (1 − τk − τd)(Rd − δd)− τ Id(

1
β
− 1 + δd) = (Rk − δk)(1 − τk) (4.30)

Thus, when we have τd = 0, the VAT on autonomous capital investment affects the relation between
net marginal productivities as follows:

Rk − δk = Rd − δd −
τ Id

1 − τk (
1
β
− 1 + δd) (4.31)

Aternatively, when we have τ Id = 0, the robot income tax affect the relation between the net marginal
productivities as follows:

Rk − δk = (1 − τd

1 − τk )(Rd − δd) (4.32)
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4.3.3 Government

Government collects taxes from traditional sources (consumption tax, labor tax, capital tax and social
security contributions paid by the employers and the employees) and for an specific autonomous capital
tax (either the VAT on autonomous capital investment, the robot income tax or the robot’s social security
tax). In this chapter we do not explore scenarios in which the government taxes autonomous capital in
different simultaneous ways, so only one autonomous capital taxation is considered in each simulation.
Either τd > 0; τ Id = 0; τssz = 0, or τd = 0; τ Id > 0; τssz = 0, or τd = 0; τ Id = 0; τssz > 0.

Tt = τc
t Ct + (τl

t + τssw
t + τsse

t )WtLt + τk
t (Rk,t − δk)Kt + (τk

t + τd
t + τssz

t )Rd,tDt − (τk
t + τd

t )δdDt + τ Id
t Id,t
(4.33)

4.4 Calibration

This section collects the calibration of the model according to an artificial economy following an annual
basis, summarized in Table 4.1. The calibration is organized in differentiated parts. First, we calibrate
some parameter according to standard well-known values in literature. Second, we calibrate the tech-
nological specific parameters of our two technological frameworks so both can be compared with each
other sustaining their values in the automation literature. Finally, we calibrate tax rates using OECD
data.

As parameters whose values have been consistently argued by previous literature, we set the dis-
count factor, β, equal to 0.975, the consumption-leisure preference parameter, γ, at 0.4, and the tradi-
tional capital depreciation rate, δk, at 0.06. Within the first technological specification, we set the tra-
ditional capital share, θ, as 0.35. For the second technological specification, in order to make the two
technological specifications comparable, we set the capital share in traditional technology, α also to 0.35.
The elasticity of substitution between traditional capital and labor in Technology B, ε, is set as 0.90, lower
than one, consistently with Chirinko (2008), Eden and Gaggl (2018) and Lin and Weise (2019). Again, in
order to make comparable both technological specification, the elasticity of substitution between tradi-
tional capital and effective labor, ρ, is also equal to 0.90.

Automation literature has explored the autonomous capital depreciation rate as an important pa-
rameter influencing the economic implications of automation. Graetz and Michaels (2018) consider a
robots depreciation rate of ten per cent. Abeliansky and Prettner (2017), following Graetz and Michaels
(2018), also assume a robotic depreciation rate of 10%. This depreciation rate would be higher than the
one established by the International Federation of Robotics (2016), which sets a lifetime horizon of 12
years for robots. Lin and Weise (2019), along with Krusell et al. (2000), set out a quarterly depreciation of
robots at 0.0515. In our case, autonomous capital is assumed to represent the most advanced technology
in the economy, and, therefore, we determine δd = 0.20, according to the depreciation rate traditionally
assumed for R&D capital. This percentage is reflected in the EU KLEMS data and has been documented
by numerous authors (see, for example, Hall, 2005).

The autonomous capital adoption rate in both technological specifications, ϕ and µ, are explored in
the range of values between 0 and 0.45 considering only feasible scenarios, following the results from
Manyika et al. (2017) stating that the percentage of tasks that can be automated using current technol-
ogy is higher than 45% for industrialized countries. This "percentage of tasks that can be automated
using current technology" would be the empirical counterpart to our definition of autonomous capital
adoption rate.

The elasticity of substitution between human labor and autonomous technology has been consid-
ered in several studies, although there is a lack of estimations in literature. Lin and Weise (2019) states
an elasticity of substitution of 5. Artuc, Bastos and Rijkers (2018) set it at 10. Acemoglu and Restrepo
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(2020a) assume an infinite elasticity of substitution between humans and robots. DeCanio (2016) con-
cludes that this elasticity of substitution is for sure above 2.1. In order to consider an elasticity of sub-
stitution between traditional and autonomous productive factors prudent enough to allow us to make
comparisons between both technological specifications, we set υ = σ = 2, although we calculate op-
timal autonomous capital tax rates in ranges for υ and σ between 1 and 3 in order to show that these
elasticities of substitutions do not alter these results.

Tax rates are calibrated according to the OECD average (OECD, 2018; OECD, 2019): τc = 0.1832,
τl = 0.1646,τsse = 0.1589,τssw = 0.0945 and τk = 0.2418. The alternative autonomous capital taxation
shapes (τd, τ Id andτssz) are left free exploring optimal values sustaining the social security contributions
to output ratio.

TABLE 4.1: Calibrated parameters

Parameter Definition Value
Preferences β Discount factor 0.975

γ Consumption-leisure preference parameter 0.40
Technologies δk Traditional capital depreciation rate 0.06

δd autonomous capital depreciation rate 0.20
Technology A θ Traditional capital share 0.35

ρ Traditional capital - effective labor elasticity 0.90
υ Autonomous capital - labor elasticity 2
ϕ Autonomous capital adoption rate [0-0.45]

Technology B α Capital share in the traditional technology 0.35
ε Traditional capital-labor elasticity 0.90
σ Traditional-autonomous technologies elasticity 2
µ Autonomous capital adoption rate [0-0.45]

Traditional taxes τc Consumption tax rate 0.1832
τl Labor income tax rate 0.1646

τsse Employer’s social security tax rate 0.1589
τssw Employee’s social security tax rate 0.0945
τk Capital income tax rate 0.2418

Robot taxes τd Robot income tax Free
τ Id VAT on autonomous capital investment Free
τssz Robot’s social security tax rate Free

Given the calibrated model, we solve a system of 10 equations (5 common to each technology and
5 technology-specific) for ten unknown quantities, (Y, C, K, D, L, X, W, I, Rk, Rd), where I denotes total
investment as the sum of investments in traditional and autonomous capital: I = Ik + Id.9 The model
satisfies the Blanchard-Khan rank condition (Blanchard and Khan, 1980), indicating that the steady state
is unique, transversality conditions holds and that all trajectories are optimal in the long-run.

4.5 Results

This section presents the main results of this research in five phases. First, we show how the social secu-
rity contributions to output ratio plums under both technological specifications as automation advances.
Second, we calculate the autonomous capital tax rates (for the robot income tax, the VAT on autonomous

9Steady State expressions considering the two technological propositions can be found in the appendix.
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FIGURE 4.1: Steady state values for the ratios of social security contributions to output as
a function of automation.

capital investment and the robot’s social security) that sustain the social security contributions to out-
put ratio as automation advances under the two technological frameworks. Third, we comment on how
the labor and capital shares of social security contributions evolve as automation advances. Fourth, we
analyze how the three differentiated fiscal alternative policies taxing autonomous capital affects the evo-
lution of the economy as the autonomous technology adoption rate increase. Finally, we show how the
different schemes of autonomous capital taxation affect the functional distribution of income compared
to a no autonomous capital taxation scenario.

4.5.1 Automation and social security sustainability

According to the literature, automation significantly reduces the government’s tax revenue since most
tax revenue comes from labor-related taxes, so worker automation could result in hundreds of billions
or even trillions of dollars in tax revenue lost per year at various levels of government (Abbott and
Bogenschneider, 2018; Soled and Thomas, 2018; Mazur, 2019; Porter, 2019). In this line, Ahmed (2018)
claims the necessity to rethink all assumptions of taxation, arguing that if AI is not correctly taxed, the
traditional tax base of workers may shrink to the point that less total taxes are collected, in a sense that
governments must carefully develop standards for taxing AI.

This significant automation-induced reduction in the government size is documented in Casas and
Torres (2022). As we observe in Figure 1, since social security contributions uniquely rely on human
labor, the total social security contributions to output ratio plums as autonomous capital increases its
presence in production. This fact matches with the idea that actual tax systems, relying on human effort
through income or payroll taxes, are vulnerable to dislocation with the rise of AI and robotics (Kovacev,
2020).

As argued in the literature, new and old forms of progressive taxation should be implemented in
the globalized and digitalized world, paying particular attention to understanding both the dynamics
of the tax base and the ways in which different types of income have to be taxed (Dosi and Virgillito,
2019). This necessity of rethinking tax systems is also transmitted by Costinot and Werning (2022), who
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FIGURE 4.2: Robot income tax that sustains the social security contributions to GDP ratio
as a function of the autonomous capital adoption rate and the autonomous technology

substitutability degree.

explore how government policy should respond to technological change in second best environments
—where income taxation is available, but taxes on specific factors are not—, finding that more robots
may go hand in hand with more inequality and lower taxes, despite robots being responsible for the rise
in inequality, and governments having extreme preferences for redistribution.

4.5.2 The optimal autonomous capital taxation to sustain social security

Figures 2, 3 and 4 plot, respectively, the robot income tax, the VAT on autonomous capital investment
and the robots’ social security tax that sustain the ratio of social security contributions to output as
automation advances. The left-graphs in these figures collects estimations using the first technological
specification while the right-graphs collects estimations using the second technological specification. As
we observe, the values for these rates tend to be very high to the left of the graphs while they converge
to a certain rate for all the elasticities of substitution between traditional and autonomous inputs of
production.

We are specifically interested in these rates of convergence for each substitutability degree, since
these are the values that we are going to use in the following section to analyze the potential effects that
these three alternative fiscal policies of autonomous capital taxation may have in the economy.

Scheme 1: Taxing robot income, τd

Figure 2 calculates the robot income tax that sustains the social security contributions to output ratio as
automation advances, finding that this tax rate converges to a value of 0.56 under the first technological
specification while converging to a slightly lower tax rate around 0.48 under the second technological
specification.

As we observe, both technological specifications converge to the same value for every elasticity
of substitution considered. The intuition behind these results is that automation makes labor time to
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FIGURE 4.3: VAT on autonomous capital investment that sustains the social security con-
tributions to GDP ratio as a function of the autonomous capital adoption rate and the au-

tonomous technology substitutability degree.

decrease and wages to increase. As higher the autonomous capital substitutability is, the decrease (in-
crease) in labor time (wages) is higher, compensating each other and leading to a convergence in the
optimal tax rate to sustain social security contributions to output ratio constant. This intuition also
highlights that the decline in this ratio is triggered by the exponential increase in output generated by
the introduction of the autonomous technology while social security funds collection does not increase
at the same rate.

At the first stages of autonomous capital adoption, since the stock of autonomous capital is very
reduced and it has to assume the taxation required to compensate the fall in the social security contri-
butions to GDP ratio, the tax rate calculated is high. Finally, every elasticity of substitution converge to
the same tax rate for the rest of the autonomous capital adoption process.

This convergence process for different elasticities of substitution is much lower if we assume that
autonomous technology does not replace only human labor but also traditional capital. Taken these
results to reality, we can conclude that, although in the first stages of automation process there might
be not possible to establish a tax policy attaining autonomous capital and social security contributions
because of the reduced dimension of this autonomous capital stock, the model show convergence for
the optimal tax rates in order to implement the appropriate tax policy once autonomous capital share
surpasses a certain threshold around 10 to 20 percent depending on its traditional capital replacement
ratio independently of the substitutability degree between new and old technologies. If robots only
replace labor, the threshold value would be close to 10% and if robots also replaces traditional capital
significantly it would be close to 20%.

Scheme 2: Taxing robot investment, τid

Figure 3 plots the calculations for the VAT on autonomous capital investment that sustains the social se-
curity contributions to GDP ratio as automation advances, finding that this tax rate converges to values
of 0.38 under the first technological specification and 0.23 under the second technological specification.
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Scheme 3: Taxing robots as humans, τssz

Figure 4 plots the robots’ social security tax that sustains the ratio of social security contributions to GDP
as the automation of the economy increases. We observe that this tax converges to a value of 0.28 in the
case of Technology A while it converges to a value of 0.18 for the case of Technology B.

As we notice, the calculated tax rates are higher under the first technological specification for the
three alternative of autonomous capital taxation and lower for the second technological specification
considering the replacement of traditional capital units. The reason behind these differences in the opti-
mal tax rates sustaining social security contributions to output ratio is the fact that the more widely ex-
tended technological assumption reflecting the automation process leave aside the fact that autonomous
technology also replaces traditional capital. Thus, we can offer a range for the optimal tax rates in which
the lower bound is given by the value calculated under Technology B and the upper bound is given by
the value calculated under Technology A.

4.5.3 Labor-Capital shares in social security contributions

Once we have calculated the optimal tax rates for every alternative of autonomous capital taxation, we
can calculate how the shares of contributions to social security for both labor and autonomous capi-
tal would evolve under each scheme as automation advances. These shares for the three alternative
schemes under the two technological specifications can be found in Figure 5. As we observe, capital
share in contributions to social security funds increases progressively as automation advances so both
labor and capital sustain at a 50% share the social security at a certain autonomous capital adoption rate
below 40%.
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FIGURE 4.5: Share of social security contributions paid by labor and autonomous capital
sources as a function of automation.

4.5.4 The economic implications of autonomous capital taxation

Once we have calculated the optimal values for the different alternatives of autonomous capital taxa-
tion, we explore the consequences that these alternative fiscal policies may have in the economy as the
automation process advances.

Figure 6 and Figure 7 shows the effects of automation in the economy under different fiscal policies
regarding autonomous capital taxation according to the technological specifications A and B respec-
tively. As we observe, for both technological specifications the robots’ social security tax is the fiscal
policy that least affects the benefits of automation in the economy. In the figures we observe 4 alterna-
tive scenarios as automation advances: an scenario without specific taxation on autonomous capital and
the three alternatives of capital taxation targeted by this study.

Dosi and Virgillito (2019) consider that a robot tax is likely to slow down the adoption of labour
displacing technologies although it is still not clear whether it should be on the ownership or the use of
robots. As we observe in Figure 5, this effect is observed under the first technological specification only
once the autonomous capital adoption rate has surpassed loosely the 30%, while it is not clearly ob-
served in Figure 6 under the second technological specification where labor time is reduced practically
at the same rate independently of the autonomous capital taxation scheme implemented.

The reduction of average working time triggered by automation has been extensively documented
in the literature. 10 We must bear in mind that our model collects labor time from an aggregated per-
spective, so we can not specify if the labor time decrease redound in an unemployment increase or just
in a reduction of the working day. Regarding this fact, Pi and Fan (2021) analyze the impact of robots on

10See, for instance, Bongers and Molinari (2020).
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FIGURE 4.6: Steady state values of key macroeconomic variables as a function of automa-
tion under different fiscal policies specifically taxing autonomous capital (Technology A).
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equilibrium unemployment of unionized workers by building a dynamic game, finding that the effect
of robot utilization on equilibrium unemployment is determined by the characteristic of returns to scale
in the robot manufacturing sector and that the impact on economy-wide equilibrium unemployment is
also determined by the proportion of unskilled labor in the whole economy. On their behalf, Cabrales
et al. (2020) deny that a tax on robots do decrease workers’ effort although it reduces the probability of
worker substitution in an experiment where workers make productive effort decisions and managers
can choose between workers and robots to do these tasks.

As we observe, the social security tax rate on robots paid by the employer is the tax policy causing
less damage to the economy under both technological specifications. As increasing the share of social
security contributions paid by employers has a positive effect on economic activity and welfare (Torres,
2022), we can argue that the reason for the robot’s social security tax rate to be the more efficient way to
tax the autonomous capital is that this taxation does not directly appear in the households maximization
problem.

4.5.5 The functional distribution of income and autonomous capital taxation

One of the main concerns related to the autonomous capital technological change is the effect that new
autonomous technologies are triggering in the functional distribution of income. Indeed, literature has
suggested automation as one of the factors originating the global decline of labor shares (Graetz and
Michaels, 2018; Charalampidis, 2020). For instance, it has been argued that the labor share decline
is triggered by technological change (Farmer and Lafond, 2016), the decrease in the relative price of in-
vestment goods that induce firms to replace labor inputs for capital inputs (Karabarbounis and Neiman,
2014a), and the decline in routine occupations (Eden and Gaggl, 2018).

According to Prettner (2019), automation explains a 14% of the labor share decline over the las
decades in the US. Dao et al. (2017) defend that half of the overall labor share decline in advanced
economies is due to technological progress and varying exposure to routine occupations. On their be-
half, Aum, Lee and Shin (2018) argue that computerization triggered 4 out of 5 percentage points of
labor share decline between 1980 and 2010.

Due to the importance of considering the capital depreciation rate in the analysis of the functional
distribution of income (Karabarbounis and Neiman, 2014b; Bridgman, 2018), this section presents both
gross and net incomes for both technological specifications. Concretely, Figure 8 and Figure 9 present
gross income under Technology A and Technology B, respectively, while Figure 10 and Figure 11 collect
net income under Technology A and Technology B, respectively.

The gross labor share, as observed in figures 8 and 9, evolves similarly regarding the different fiscal
schemes under both technological specifications. We observe that, in gross terms, the three alternative
autonomous capital taxation schemes reduce the labor share decline as automation advances, Specif-
ically, the VAT on autonomous capital investment is the scheme that most supports the labor share,
followed by the autonomous capital income tax, and finally by the robots’ social security tax. These
results can be related to Acemoglu et al. (2020), who estimate that moving to optimal taxation of capital
and labor would raise employment by 4.02 percent and the labor share by 0.78 percentage point and re-
store the optimal level of automation. However, results are very different regarding net income, where
we take capital depreciation into account.

As we notice in Figure 8, since Technology A assumes that autonomous capital only replaces labor,
the gross traditional capital share remains constant as automation advances so the gross capital share
increase is uniquely driven by the gross autonomous capital share increase. In Figure 9, we observe that
gross traditional capital share decrease since autonomous technology also replaces traditional capital
under Technology B, so autonomous capital is compensating this fall in traditional capital share and
explaining the gross capital share increase. Under both technological specifications, the autonomous
capital share in total capital is increasing as automation advances. This fact of the share of equipment
and machines in capital rising with development, was already highlighted by Zeira (1998), remarking
that the ratio of machines and equipment capital to output increased from 0.28 in 1950 to 0.43 in 1995.
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FIGURE 4.8: The functional distribution of income as a function of automation under dif-
ferent fiscal policies specifically taxing autonomous capital (Technology A). Gross income.

As observed in figures 10 and 11 collecting net income, we find different results for both techno-
logical specifications. Under Technology A, we observe that the three alternative autonomous capital
taxation schemes converge to the same value for the labor share when the autonomous capital adoption
rate reaches the 45%, indicating that all alternative schemes turn out in a higher net labor share in the
long run. However, under Technology B the unique alternative scheme for autonomous capital taxation
that turns out in a higher net labor share in the long run is the robots’ social security tax, while the other
two alternative schemes converge to the long-run value without specific autonomous capital taxation.

Overall, we can conclude that a fiscal policy specifically taxing autonomous capital in order to sus-
tain the social security funds in an increasing automation scenario do not rely on significant lower levels
of inequality between labor and capital shares. Indeed, autonomous technology should be taxed at a
much higher rate in order to have a significant impact in the labor share as automation advances, therein
undermining progress to a greater extent and causing greater disruptive effects on the economy. These
results provide food for thought to the negative picture draw by several authors for future labor share
and inequality. This vision arguing that capital returns grow more than economic growth itself (Piketty,
2014) has led several scholar to claim for the necessity of radical government involvement.

4.6 Conclusions

Automation will put at risk social security sustainability in pay-as-you-go systems (Casas and Torres,
2022), a fortiori with the juncture of demographic shifts towards an increasingly aged population (Ace-
moglu and Restrepo, 2022; Jimeno, 2019; Basso and Jimeno, 2021). Indeed, new autonomous technolo-
gies are arising the necessity of rethinking tax systems worldwide (Ahmed, 2018; Korinek, 2020), since
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FIGURE 4.9: The functional distribution of income as a function of automation under dif-
ferent fiscal policies specifically taxing autonomous capital (Technology B). Gross income.
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FIGURE 4.10: The functional distribution of income as a function of automation under
different fiscal policies specifically taxing autonomous capital (Technology A). Net income.
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FIGURE 4.11: The functional distribution of income as a function of automation under
different fiscal policies specifically taxing autonomous capital (Technology B). Net income.

these labor-biased tax systems (Abbott and Bogenschneider, 2018; Huettinger and Boyd, 2020; Soled
and Thomas, 2018) are incentivicing socially undesired automation levels (Acemoglu et al., 2020) while
jeopardizing public resources (Kovacev, 2020). These three fundamental elements in current macroeco-
nomic scene -technological change, demographic shift and labor-biased tax systems- interact in a spiral
that encourages automation, increasing the need for public resources while restricting them.

This chapter analyze alternative schemes of autonomous capital taxation in order to maintain social
security size as automation advances. Specifically, we examine the policies of an autonomous capital
income tax, a VAT on the investment in autonomous capital and a social security tax paid by the em-
ployers of autonomous technology. Thus, the optimal tax rates at which new autonomous technology
should be taxed in order to maintain social security size under each fiscal scheme are calculated under
both technological specifications. These tax rates are found to be higher at the three alternative schemes
when assuming that autonomous technology only replaces labor while not affecting the traditional cap-
ital stock. In addition, the optimal tax rates are found to be independent of the substitutability degree
between autonomous and traditional technology. For all the alternative tax schemes for autonomous
capital, the policy implies that social security funds are financed at 50% for labor and capital once the
rate of adoption of new autonomous technologies passes a threshold of around 35%, from that point on,
capital would finance social security to a greater extent than labor.

The effect that the different alternative schemes of specific taxes on autonomous capital would have
similar effects on the economy although of different magnitude, with the alternative of treating the new
autonomous capital as human labor through the application of social security contribution rates paid
by the employer of these technologies being the least distorting alternative. This effect on the economy
of taxes on autonomous capital is the expected, limiting the expansion of production generated by the
introduction of new technologies, as well as consumption and investment. Consequently, the capital
stock grows at a lower rate as the rate of adoption of new technologies increases. However, there is
only a visible impact slowing down the decline of labor time in the economy under the technology
specification that assumes only replacement of labor by autonomous capital leaving aside the question
of replacement of traditional capital units.

When analyzing the implications of autonomous capital taxation for the functional distribution of
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income, it turns out essential to consider capital depreciation rates, obtaining very different results in
gross and net terms. In general, none of the alternative schemes has a significant effect on decreasing
the drop in labor share. In gross terms, the VAT to autonomous capital investment is the alternative
scheme that sustains the most the labor share while social security contributions paid by autonomous
technology employers would be the scheme with the least impact. In net terms we observe the opposite,
with this scheme of social security contributions paid by employers of autonomous technology being
the policy that shows the most labor share friendly effects.

In summary, this chapter concludes that implementing a social security contribution rate paid by
the employers of self-employed capital is the best fiscal scheme alternative when considering the so-
cial security sustainability supported by autonomous capital. Specifically, this alternative turns out to
be the one causing the least distortions to the economy and having the most favorable implications in
mitigating the labor share fall in net terms. These results contribute new evidence to the need to re-
think the financing of social security in times of increasing automation. Nevertheless, we should bear in
mind that the possible implementation of robot taxes will finally depend on political interests relying on
citizens perceptions of such taxes. Regarding this fact, Nam (2019) analyzes citizens attitudes towards
four alternative policies preventing job replacement by robotic automation (guaranteed income, robot
quotas, extra pay for human interaction, and a national program for displaced workers), relatively less
progressive than robot taxes, finding that attitudes differ considerably based on ideology and partisan-
ship.

Appendix: Steady State Expressions

From the households maximization problem
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Chapter 5

Revisiting the future of occupations

5.1 Introduction

Digitalization is changing the lives of all economic agents to some extent and in a certain way, trans-
forming the labor market in profound ways, reshaping the nature of work and affecting the future of
various occupations. As technology continues to evolve, it is essential to examine the potential impacts
of digitalization on employment in order to make informed decisions about workforce development,
policy planning, and economic growth.

This chapter contributes to the literature by presenting seven novel mappings of the US employment
landscape in relation to the digitalization process. Our approach combines both backward-looking and
forward-looking measures, capturing the current state of digitalization and the potential future effects
on occupations. By exploring the complex interplay between automation, AI, and the future of occu-
pations, this chapter adds to the growing body of literature on the impact of digitalization on the labor
market (Acemoglu & Restrepo, 2018; Autor, 2015; Dauth et al., 2017). In doing so, it seeks to inform
the development of policies and strategies that can foster economic growth, social inclusion, and labor
market resilience in the face of rapid technological change.

In order to develop our analysis, we revisit Fossen’s and Sorgner’s (2019) classification by elaborat-
ing new typological classifications based on the incorporation of new occupation-level measures on both
the destructive and the transformative digitalization sides. Specifically, we consider both a backward-
looking and a forward-looking measure for each digitalization side. This consideration allows the elab-
oration of a concrete typological classification on each digitalization side and occupational terrains from
different time-perspectives: backward-looking, forward-looking or complete vision terrains.

We begin by constructing typological mappings for each digitalization side: the automation terrains
and the intelligence terrains. The automation terrains classify occupations into four groups based on
their current automation degree and future computerization probability, reflecting the destructive side
of digitalization (Bessen, 2019). On the other hand, the intelligence terrains divide occupations into four
groups according to the AI advances and AI exposure, representing the transformative side of digital-
ization (Brynjolfsson & McAfee, 2014). Next, we develop two occupational terrains classifications that
consider the interactions between the destructive and transformative effects of digitalization from both
a backward-looking and a forwardlooking perspective. The backward-looking occupational terrains
capture the current state of digitalization with respect to automation degree and AI advances, while the
forwardlooking occupational terrains focus on expectations about how digitalization will affect occu-
pations in terms of computerization probability and AI exposure. Finally, we propose three extended
occupational terrains that integrate different time perspectives for each digitalization side, offering a
more nuanced understanding of the labor market dynamics in the context of digitalization considering
both time perspectives (backward-looking and forward-looking) and both digitalization sides (destruc-
tive and transformative).
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5.2 Literature review

This section presents a literature review targeting the economic impacts of autonomous technologies
that started being developed with the computer revolution and have been evolving until the appear-
ance of AI and the spread of digitalization. We may consider that the computer revolution began with
the Charles Babbage’s idea of the Analytical Engine conceived in 1834 with the article written in 1843
by Augusta Ada Byron, Lady Lovelace, which included descriptive, analytical, contextual, and meta-
physical information about the Analytical Engine and also the first ’program’ (Toole, 1996). If in every
technological change in history we have found winners and losers in the short term (interpreting that
society as a whole has always benefited from technological improvements in the long term), in the great-
est technological change in history this affectation is even more prominent: from workers who was dis-
placed from their jobs to workers who experienced promotions and/or wage increase due to their skills;
and from entrepreneurs who saw their business break up due to new market threats to entrepreneurs
who saw their business growth due to new market opportunities. 1

All these dualities respond to the clearly dual nature of digitalization. That is why, while some work-
ers observe their value plummet in the labor market as they are affected by destructive digitalization,
other professionals contemplate their value skyrocket in the labor markets due to the growing demand
for their skills, driven by the transformative side of digitalization. 2 This dual fact also explains why
some studies, using the same robot data (IFR, 2018), can claim at the same time employment rate and
wages reduction (Acemoglu and Restrepo, 2020a) and labor productivity growth (Graetz and Michaels,
2018), highlighting the fact that the process of robotization is industry- and country-sensitive (Gentilli
et al., 2020). This duality also matches the answer that Autor (2015) gave to his question: there are still
so many jobs because not everything in this technological change is about job destruction, there is also
space for transformation - generation and displacement of jobs (automation raises the demand for labor
in nonautomated tasks).

5.2.1 Destructive digitalization

When talking about destructive digitalization, it results unavoidable to refer to the famous work of
Frey and Osborne (2017) that already created controversy from the publication of the working paper
in the year 2013 claiming that 47% of US jobs where at high computerization risk. This Luddite vision
have caused that technology entrepreneurs (Elon Musk, Bill Gates, etc) raised their voices in favor of
an Universal Basic Income (UBI), although it seems that there is no association between the automation
risk and UBI support among citizens (Dermont and Weisstanner, 2020).

Numerous contemporary studies drew conclusions in that direction. For instance, Sorgner (2017)
investigated the relationship between the risk of automation of jobs and individuallevel occupational
mobility to find that workers in occupations at high automation risk are more likely to experience occu-
pational changes such as losing a job, demotion at the current place of employment, or starting a job in
a new field. Other authors have argued that the effects of this destructive digitalization go beyond the
professional sphere, generating a situation of stress that can affect the health of workers. For instance,
Cheng et al (2021) find that computerization probability may significantly predict workers’ health af-
ter adjustment for demographic characteristics and psychosocial work conditions, with workers in jobs
with a high computerization probability being more likely to have low job control, higher job insecurity,
and work-related injury and disease prevalence.

From a theoretical perspective, Acemoglu and Restrepo (2018c) argue that modeling automation as
the process of machines replacing tasks previously performed by labor is both descriptively realistic and

1See Raj and Seamans (2019) for a review about the economic and organizational consequences of AI, robotics and related
technologies.

2Digitalization may also deeply transform researchers work: Furman and Teodoris (2020) examine how the introduction of
a technology that automates research tasks influences the rate and type of researchers’ knowledge production, to find that it
increases the production of ideas and induces researchers to pursue ideas more diverse than and distant from their original
trajectories.
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leads to distinct and empirically plausible predictions, dissuading its modeling as factor-augmenting
technological change. However, this alarming speech has been downplayed by other researchers. For
instance, by Arntz et al. (2016, 2017), who argue that the actual percentage of jobs at risk of automa-
tion in the OECD was 9%. Furthermore, other authors have tinted this alarmist vision by arguing that
only certain tasks in an occupation, rather than entire occupations, can be substituted. For instance,
Dengler and Matthes (2018) expose that, although assuming that entire occupations are replaceable ap-
proximately 47% of German employees experience an automation risk, only 15% of German employees
are at risk when assuming that only certain tasks can be substituted.

Following the tasks’ approach, Acemoglu and Restrepo (2018d) analyze the automation process in
a framework in which tasks previously performed by labor can be automated and new versions of
existing tasks, finding two possible scenarios: (i) if the long-run rental rate of capital relative to the wage
is sufficiently low, the long-run equilibrium involves automation of all tasks; (ii) otherwise, there exists
a stable balanced growth path in which the two types of innovations go hand-in-hand. In other study,
these authors propose a task-based model to study the effect of new technologies on labor demand,
denying the possibility of all tasks automation, to conclude that, if the origin of productivity growth
in the future continues to be automation, the task content of production will decline, highlighting the
importance of new tasks generation and other technologies raising the labor intensity of production
in order to pursue a continued wage growth commensurate with productivity growth (Acemoglu and
Restrepo, 2019).

More recently, Freeman et al. (2020) highlight their skepticism toward projections of massive job
upheaval in the foreseeable future by finding that recent changes in job attributes and tasks were driven
more by within-occupation changes in work than by the shifts in employment among occupations, be-
ing these within-occupation changes generally modest. In addition, Domini et al. (2021), by using
employer-employee data for French manufacturing employers over the period 2002-2015 and identify-
ing ’automation spikes’ by considering imports of capital goods embedding automation technologies,
find that automation spikes are linked to an increase in firms’ contemporaneous net employment growth
rate, also affirming that automation spikes are not associated with significant changes in the composi-
tion of the workforce.

Other authors have approached the automation process from the ICT capital perspective. In this
line, Eden and Gaggl (2018) document that the decline in the labor income share since the 1950s has
been countered by a rise in the income share of capital goods that embody information and communi-
cation technology (ICT) also arguing that there has been substantial reallocation of labor income from
occupations relatively substitutable with ICT (routine) to ones relatively complementary (non-routine).
These results can be complemented by a skills based explanation: Colombo et al. (2019) explore the re-
lationship between skills and computerization probability, highlighting that both hard skills (advanced
ICT skills and skills related to communication and social media) and soft skills (thinking and social
interaction skills) tend to be negatively related to the computerization probability.

Also related to this ICT capital perspective, Jerbashian (2019) provides evidence that the fall in prices
of information technologies (IT) is associated with a lower share of employment in middle-wage occu-
pations and a higher share of employment in high-wage occupations in industries which depend more
on IT relative to industries which depend less. Contrary to this vision, Cortes et al. (2017) argue that the
deterioration of employment in middle-wage, routine occupations is primarily driven by changes in the
propensity to work in routine jobs for individuals from a small set of demographic groups, which ac-
count for a substantial fraction of both the increase in non-employment and employment in low-wage,
non-routine manual occupations. Furthermore, they conclude that advances in automation technology
on their own are unable to jointly generate changes in occupational shares and employment propensi-
ties.

On the other hand, fathoming this evidence of technology automating middle-wage occupations’
routine tasks, Downey (2021) argues that technology only partially automates these, simplifying them so
that they can be performed by less-skilled workers. Complementary to this study, we can approach tasks
automation processes by bringing to the fore the considerations of firms’ costs optimization in the tasks
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automation decisions. In this regard, Feng and Graetz (2020) analyze how job training requirements
interact with engineering complexity in shaping firms’ automation decisions, to argue that when two
tasks are equally complex, firms automate the task that requires more training.

Other authors bear in mind that digitalization interacts with other major economic trends such as
globalization. In this line, Foster-McGregor et al (2021) analyze the relation between trade and aggregate
automation risk to conclude that automation risk in the highproductivity European countries is higher
with trade, which implies that these countries do not, on balance, offshore automation risk, but rather
import it. Related to this consideration, Krenz et al. (2021) analyze the offshoring and reshoring deci-
sions of firms in the age of automation, suggesting that increasing productivity in automation leads to a
relocation of previously offshored production back to the home economy (concretely, within manufac-
turing sectors, an increase by one robot per 1000 workers is associated with a 3.5% increase of reshoring
activity). In addition, they argue that automationinduced reshoring is associated with an increasing
skill premium and increasing inequality, since it leads also to increasing wages for high-skilled workers
but without improving low-skilled wages and without creating jobs for low-skilled workers. Related
to this consideration, Acemoglu and Restrepo (2018b) present a task-based model analyzing separately
the effects of low-skill and high-skill automation.

The interaction between digitalization and the ageing of the population is another nexus of interest
in the nowadays economic literature. Indeed, because of an aging population and slower population
growth, labor force growth is expected to be slower in 2020-30 than in previous decades (Dubina et al.,
2021). Within this strand of literature, Phiromswad et al. (2022) examine and estimate the interaction
effects of computerization and population aging on the labor market, to find that computerization and
population aging have large and statistically significant effects on employment growth but not earnings
growth. These statistically significant effects are also explored by Acemoglu and Restrepo (2022), who
describe the ageing of the population as an augmenting-automation process, highlighting that ageing
leads to greater industrial automation with a more intensive use and development of robots.

Regarding this fact, Jimeno (2019) argues that it is likely that even though population ageing creates
incentives for automation, per capita growth will slow down during the current demographic transi-
tion. Related to these studies, Gregoli et al. (2020) examine the impact of automation on aggregate labor
force participation rates and individuals’ attachment to the workforce in advanced economies, to find
significant negative effects of automation on the participation rates of prime-age men and women, con-
firming that workers previously employed in routinizable occupations are more likely to drop out of the
labor force. In addition, they remark that higher spending on active labor market programs and educa-
tion are associated with smaller negative effects of technological change on participation, highlighting
the potential of policy makers to turn the digitalization effects on labor markets from destructive to
transformative.

5.2.2 Transformative digitalization

As in the destructive side of digitalization we find the purely common factor of almost every technolog-
ical change in economic history, accentuated by the new generations of technologies, in the transforma-
tive side of digitalization we find, like a flower among the weeds, the Artificial Intelligence (AI). This
new technology, understood as the culmination of a process that begins with the glimpse of the first
machine, is coming into reality after being widely imagined, fantasized and conceptualized by science
fiction.

Numerous authors have highlighted the labor-friendly side of the AI, separating this technology
from the traditional conception of work automation technologies. Indeed, Tolan et al. (2021) show that
some jobs that were not known to be affected by previous waves of automation may now be subject
to higher AI exposure. Acemoglu and Restrepo (2018a) highlight that, although many occupations in-
volve tasks suitable to AI and are likely to experience a displacement effect triggered by this technology,
there are still many human skills that we still cannot automate, including complex reasoning, judgment,
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analogy-based learning, abstract problem-solving, and a mixture of physical activity, empathy, and com-
munication skills. Related to this consideration, Alekseeva et al. (2021) document a high increase in the
demand of AI skills between 2010 and 2019 in the US economy across most industries and occupations.
From the point of view of AI patents, Damioli et al. (2021) find evidence of a positive and significant
impact of AI patent families on employment. However, other authors identify AI as a labor-unfriendly
technology. For instance, Bordot (2022) analyzes the influence of robots and AI in the unemployment
rate of 33 OECD countries during the 2005 − 2017 period to find that a 10% increase in the stock of
industrial robots implies a 0.42 point increase unemployment rate, while finding a positive correlation
between AI and the aggregated unemployment rate.

In this line, Ciarli et al. (2021), by analyzing the emerging trajectories of digital technologies and
skills, highlight that digitalization is often more about the displacement and deep transformation of ac-
tivities and their organization than about a simple one-to- one replacement of jobs. 3 Related to these
displacement and transformative effects on labor, Tschang and Almirall (2020) remark the need to ar-
ticulate the mechanisms by which AI may reduce and augments jobs, and in the process, transform the
balance of work available. In addition, they argue that AI is augmenting automation by allowing firms
to modularize and control routine work in a way that the remaining work tends to be nonroutine and
low skilled (allowing for further replacement in the future), or high skilled. This shift in the skills de-
mand due to digitalization has been also explored in McGuinness et al. (2022), who create a measure of
skills-displacing technological change (SDT), defined as technological change that may render workers’
skills obsolete, to find that 16 percent of adult workers in the EU are impacted by SDT, with signifi-
cant variance across countries, ranging from a high of 28 percent in Estonia, to below seven percent in
Bulgaria.

This transformative technology harbors a subset of technologies in which a core element is consti-
tuted by an assumed labor-destructive sub-technology: the Machine Learning (ML). This sub-branch
of AI also accounts for an occupation-level measure of ML suitability developed by Brynjolfsson et al.
(2018). The tasks more suitable to ML are those in which the following 8 criteria are fulfilled (Bryn-
jolfsson and Mitchell, 2017): (i) the task implies learning a function that maps well-defined inputs to
well-defined outputs, (ii) large (digital) data sets exist or can be created containing input-output pairs,
(iii) the task provides clear feedback with clearly definable goals and metrics, (iv) it does not involve
long chains of logic or reasoning that depend on diverse background knowledge or common sense, (v)
there is no need for detailed explanation of how decisions are made, (vi) there is a tolerance for error
and no need for provably correct or optimal solutions, (vii) the phenomenon or function being learned
should not change rapidly over time, and, (viii) there is no specialized dexterity, physical skills, or mo-
bility required.

5.2.3 Occupations typologies

To date, few articles have fall on the dual nature of the current technological change. In the intersection
between these two technological forces -destructive and transformative-, only time will set the final
effect of the 4IR on employment. Exploring the global affectation of 4IR technologies on labor, Benassi
et al. (2022) find a positive and significant relationship between firms’ stocks of 4IR patents and labor
and total factor productivity, specifying that this effect is larger for firms with a long history in 4IR
patent filings than for later applicants.

Fossen and Sorgner (2019) develop a pioneering work in identifying the duality of digitalization,
identifying automation as the destructive side and AI as the transformative side, and providing a typo-
logical classification according to these considerations. As Table 5.1 collects, they propose a mapping of
the labor terrain in four differentiated sections according to the digitalization effects upon occupations.
Consequently, they identify the human terrain occupations as those lowly affected by either side of
digitalization and the machine terrain occupations as those highly affected by both digitalization sides.

3See Furman and Seamans (2019) for a review about AI effects on the economy.
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Moreover, they name the "Rising stars" occupations to those with low effects from destructive digitaliza-
tion and high effects from transformative digitalization and the "Collapsing occupations" to those with
high effects from destructive digitalization and low effects from transformative digitalization.

TABLE 5.1: Fossen’s and Sorgner’s (2019) classification

Destructive digitalization
Measured by the computerization probability

from Frey and Osborne (2017)

Transformative digitalization Low High
Measured by AI advances
from Felten et al. (2018)

High Rising stars Machine terrain
Low Human terrain Collapsing occupations

5.3 Data

Our sample accounts for 674 occupations, those for which we have digitalization measures availability.
These 674 occupations cover approximately an 88% of total US employment in 2020. 4 The section is
structured as follows: first, we detail the US employment data source; second, we describe the destruc-
tive digitalization measures; third, we present the transformative digitalization measures and finally we
summarize the interaction between destructive and transformative digitalization and we introduce the
occupational terrains.

5.3.1 US employment

We use data from the US Bureau of Labor Statistics. Concretely, we use occupations data at 6-digits level
according to the SOC-2010 on total employment in 2020.

5.3.2 Destructive digitalization measures

We consider the current Automation degree from the O∗ Net database as a backwardlooking measure
of destructive digitalization. 5 As a forward-looking measure of destructive digitalization, we consider
the Automation probability from Frey and Osborne (2017). We define the complete-vision measure
of destructive digitalization, Automation effects, as the mean of current automation degree and the
expectations (probability) of automation. Furthermore, we consider a typological classification as a
global vision for destructive digitalization effects, the automation terrains (A-terrains) collected in Table
5.2.

As we observe in table 2 we contemplate 4 a-terrains: when we find a low degree of automation
as well as a low computerization probability we would be talking about the hands terrain. However
when we have a low degree of automation but high computerization probability we would talk about
the Rising automation terrain, since although current automation degree is low it is expected to be
automated in the following years. Opposite to this terrain, we find a high degree of automation but with
a low computerization probability we would speak of the Collapsing automation terrain, since although

4On the one hand, we account for different levels of availability for our technological measures: 761 occupations collecting
the automation degree, 702 occupation with an associated computerization probability, 773 occupations for which AI advances
has been measured and 774 occupations with an AI exposure score. On the other hand, US employment data is available for
820 occupations at 6 digits level SOC-10. Then, in the intersection of these measures we obtain our sample of 674 occupations.

5This measure is offered by O∗ Net in the section of Structural Job Characteristics.
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TABLE 5.2: A-terrains classification

Automation degree

Automation probability Low High

High Rising automation Automation terrain
Low Hands terrain Collapsing automation

the occupation possess a current high automation degree it is not expected to be fully automated in
the near future. Finally, when we have both a high degree of automation and a high computerization
probability, the occupation would be in the automation terrain.

5.3.3 Transformative digitalization measures

We consider the current Advances in AI from Felten et al. (2018) as a backward-looking measure of
transformative digitalization and the Exposure to AI from Felten et al. (2021) as a forward-looking
measure of transformative digitalization. We define the completevision measure of transformative dig-
italization, AI effects, as the mean of current AI advances and the expectations (exposure) of further AI
developments. In addition, we consider a typological classification as a global vision for the transfor-
mative digitalization effects, the intelligence terrains (I-terrains) collected in Table 5.3.

TABLE 5.3: I-terrains classification

AI exposure

AI advances Low High

High Narrow AI definition AI terrain
Low HI terrain Future AI applications

Table 5.3 shows four different I-terrains. When an occupation has a low degree of AI advances and
low exposure to AI developments we refer to the Human Intelligence terrain (HI terrain), while if an
occupation has both a high degree of AI advances and a high exposure to further AI implementations
we would refer to the AI terrain. Moreover, if an occupation accounting for high AI advances but low
AI exposure, we would say that this terrain is that of Narrow AI, while, on the opposite side, if an
occupation has low AI advances but high exposure to AI progress in the future we would talk about the
terrain of the Future AI.

5.3.4 Destructive and transformative digitalization

In this section we put together the destructive and transformative visions of digitalization, introducing
the occupational terrains that we are going to use to analyze the US employment both in 2020 and for the
projections of the year 2030. In that sense, we begin by briefly describing the continuous measures that
we have proposed in the previous sections on destructive and transformative digitalization from the
retrospective, prospective and complete view (Table 5.4). Then, we summarize in an unique table (Table
5.5) the terrains proposed on the destructive digitalization side (A-terrains) and on the transformative
digitalization side (I-terrains).

Consistently with descriptions in previous sections, we are going to propose three different occu-
pational terrains with three different temporal visions: the retrospective vision, the prospective vision
and the complete vision. For the elaboration of these occupational terrains, we take into account both
the destructive side and the transformative side of digitalization in each time perspective. Then, we use
the retrospective measures of both automation and AI to elaborate the backward-looking occupational
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terrains, we use the prospective visions of both automation and AI to elaborate the forward-looking
occupational terrains and finally we use the complete vision measures of both automation and AI to
develop the full vision occupational terrains.

TABLE 5.4: Summary of measures: continuous variables and descriptions

Time approach Measure Brief description

Destructive
digitalization

Backward-
looking vision

Automation
degree Current automation degree of the occupation.

Forward-
looking vision

Automation
probability

Probability that the occupation will be computerized
in the time lap between 2023 and 2033.

Transformative
digitalization

Backward-
looking vision AI advances AI progress in the occupation from 2010 to 2015.

Forward-
looking vision AI exposure Experts’ estimation of AI potential in the forthcoming

vears

TABLE 5.5: Summary of measures: typologies variables

Time approach Measure Typologies

Destructive
digitalization

Backward-
looking vision

Automation
degree Low High Low High

Forward-
looking vision

Automation
probability Low Low High High

Full vision A-terrains Hands
terrain

Collapsing
automation

Rising
automation

Automation
terrain

Transformative
digitalization

Backward-
looking vision AI advances Low High Low High

Forward-
looking vision AI exposure Low Low High High

Full vision I-terrains HI terrain Narrow AI Future AI AI terrain

Next, we expose the occupational terrains. The elaboration of these occupational terrains in three
temporal dimensions of retrospective, prospective and complete vision will allow us to analyze the US
employment from this triple temporal perspective, offering an analysis of the degree, exposure and
situation of digitalization in the US occupations.

The backward-looking vision

TABLE 5.6: Backward-looking occupational terrains

Automation degree

AI advances Low High

High Current stars Current machine terrain
Low Current human terrain Advancing to collapse

As we can observe in Table 5.6, for the backward-looking occupational terrains we take into account
the retrospective variables of automation degree (backward-looking destructive digitalization) and ad-
vances in AI (backward-looking transformative digitalization). In this sense, if the occupation has a
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low degree of AI advances and a low automation degree, we would say that it is an occupation of the
Current human terrain. If, on the contrary, the occupation has a high degree of automation and a high
score of advances in AI, we would situate this occupation in the Current machine terrain. For the case
in which the occupation presents a low degree of automation and high progress in AI, we would say
that it is a Current star occupation. On the contrary, if the occupation presents low AI advances and a
high degree of automation, we would say that the occupation is Advancing to collapse.

The forward-looking vision

TABLE 5.7: Forward-looking occupational terrains

Automation probability

AI exposure Low High

High Expected stars Expected machine terrain
Low Expected human terrain Expected to collapse

Table 5.7 presents the forward-looking occupational terrains. These occupational terrains consider
the prospective measures of digitalization. Specifically, on the side of destructive digitalization we con-
sider the measure of computerization probability, and on the side of transformative digitalization, we
consider the measure of exposure to AI. Therefore, for occupations with a low computerization proba-
bility and a low exposure to AI, we would say that they are occupations of the expected human terrain.
On the contrary, if we consider occupations with a high computerization probability and high exposure
to AI, we talk about the expected machine terrain. For occupations with low computerization prob-
ability high exposure to AI, we say that they are the expected stars. On the other hand, we speak of
the occupations Expected to collapse when we consider occupations with low exposure to AI and high
computerization probability.

5.4 Results

In this section we present the main results obtained in this study. In the first place, we present some
descriptions of the employment variables and the digitalization variables. Next, we describe the rela-
tionship between digitalization and employment in the US, both on the destructive digitalization side
considering the A-terrains and from the transformative digitalization side considering the I-terrains. In
the third part of the section, we explore the relationship between the different occupational terrains and
US employment (from retrospective, prospective and total perspective views). In the fourth part, we
present the extended occupational terrains. For this purpose, we expand the occupational terrains clas-
sification of Fossen and Sorgner (2019) both on the destructive side of digitalization (i.e., the automation
side) and on the transformative side of digitalization (i.e., the AI side) taking into account retrospective
and prospective measures.

5.4.1 Descriptive statistics

Table 5.8 collects the descriptive statistics for the digitalization variables both from the destructive side
and from the transformative side and from the retrospective, prospective and global points of view. As
we can observe, the degree of automation takes values between 1% and 70%, with an average of 0.286
, while the computerization probability takes values between 0.0028 and 0.99 , with an average of 0.54 .
Consequently, the variable that collects the effects of automation, being the mean of both variables, takes
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values between 0.015 and 0.815 , with its mean value being 0.413 . For the variables of transformative
digitalization, we find that advances in AI take values from 1.417 to 6.537 , while the exposure to AI can
take negative values ranging from -2.67 to 1.526 .

TABLE 5.8: Descriptive statistics of the main digitalization continuous variables

Automation Automation AI AI
degree probability advances exposure

Mean 0.286 0.54 3.481 -0.098
Median 0.273 0.65 3.457 -0.22
Standard deviation 0.135 0.372 0.726 1.002
Minimum 0.01 0.0028 1.417 -2.67
Maximum 0.7 0.99 6.537 1.526
Number of observations 605 605 605 605

In Figure 5.1 we can observe the histograms of the digitalization variables. On the side of destructive
digitalization (upper row) we observe that while the degree of automation is shaped like a bell tilted to
the left, the computerization probability is U-shaped. Consequently, the variable that collects the effects
of automation presents a histogram with two bells, at left and right, the left one being more pointed
and pronounced. On the side of transformative digitalization, we observe that the histogram of the AI
advances variable clearly presents a bell shape, while the variable of exposure to AI presents a certain
U-shape with a bell on the left, a peak of values at the right end and a smaller number of observations
around the 0 value. Consequently, the variable that collects the global effects of AI presents a bell shape
flattened at the top.

TABLE 5.9: Correlation coefficients of the digitalization variables

Automation Automation AI AI
degree probability advances exposure

Automation degree 1
Automation probability 0.2849 1
AI advances -0.0885 -0.5210 1
AI exposure 0.1464 -0.4139 0.2376 1

As we observe in Table 5.9, the destructive digitalization variables correlate positively with each
other and negatively with the transformative digitalization variables. The same effect is observed in
reverse, with the transformative digitalization variables correlating positively with each other and neg-
atively with the destructive digitalization variables. The only exception to these relationships is the
positive correlation between the automation degree and the AI exposure (which also leads the automa-
tion degree to correlate positively with AI effects). This fact would mean that occupations with higher
automation degree are more exposed to AI further developments.
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FIGURE 5.1: Histograms of the main variables

5.4.2 Digitalization and US employment

Next, we present a mapping of employment in the US regarding digitalization in the two sides of its
duality: the destructive and the transformative. For this purpose, we use both the A-terrains and the
I-terrains described previously.

Destructive digitalization and US employment

First, we present the occupations with the highest and lowest degrees of automation, as well as the occu-
pations with the highest and lowest probabilities of automation (Table 5.10), together with the number
of jobs covered by each of them. As we can observe, in these occupations with higher and lower de-
grees and probabilities of automation, there are no occupations massively populated with employment,
taking into account that the maximum employment in an occupation for the year 2020 accounts 3,835
thousand jobs, while in Table 5.10 the occupation with the highest number of jobs collects 484.1 thou-
sand jobs.

TABLE 5.10: Destructive digitalization measures and US employment

SOC code SOC label Auto. Auto. 2020 US
degree prob. emp.

Occupations with the highest automation degree
413041 Travel Agents .7 .099 60.5

Continued on next page
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Continued from previous page

SOC code SOC label Auto. Auto. 2020 US
degree prob. emp.

435053 Postal Service Mail Sorters,
Processors, and Processing
Machine Operators

.68 .79 100.4

432021 Telephone Operators .66 .97 4.8
518091 Chemical Plant and System

Operators
.66 .85 29.5

434181 Reservation and Transportation
Ticket Agents and Travel Clerks

.65 .61 101.6

Occupations with the lowest automation degree
499064 Watch Repairers .01 .99 2.8
499095 Manufactured Building and

Mobile Home Installers
.01 .18 3.4

395092 Manicurists and Pedicurists .02 .95 123
493052 Motorcycle Mechanics .02 .79 14
395091 Makeup Artists, Theatrical and

Performance
.02 .01 3.1

Occupations with the highest computerization probability
232093 Title Examiners, Abstractors, and

Searchers
.51 .99 62.2

419041 Telemarketers .52 .99 119.7
132082 Tax Preparers .44 .99 87.4
132053 Insurance Underwriters .47 .99 119.4
439021 Data Entry Keyers .46 .99 158.4
519151 Photographic Process Workers and

Processing Machine Operators
.56 .99 9.3

254031 Library Technicians .42 .99 93.1
516051 Sewers, Hand .19 .99 6.9
434141 New Accounts Clerks .51 .99 46.1
435011 Cargo and Freight Agents .34 .99 95.6
499064 Watch Repairers .01 .99 2.8

Occupations with the lowest computerization probability
291125 Recreational Therapists .15 .0028 20.8
491011 First-Line Supervisors of

Mechanics, Installers, and
Repairers

.12 .003 484.1

119161 Emergency Management Directors .31 .003 10.5
211023 Mental Health and Substance

Abuse Social Workers
.19 .0031 124

291181 Audiologists .29 .0033 13.7

Figure 5.2 shows the mapping of the US employment with respect to A-terrains, where each bubble
represents an occupation and the size of the bubble depends on the number of jobs in the occupation.
As we appreciate, there are few occupations that exceed an automation degree of 50%, with practically
all occupations below this threshold. As we notice, the computerization probability variable polarizes
the occupations between occupations with a high computerization probability and occupations with a
low computerization probability with few observations in between these two extremes, as we observed
in the regarding histogram shown in Figure 5.1. Therefore, we find a high number of observations in
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the terrain of Rising automation as well as a high number of observations in the Hands terrain, with a
low number of occupations both in the terrain of Collapsing automation and the Automation terrain.

Complementary to Figure 5.2, Table 5.11 presents the occupations in each terrain that collect a higher
level of employment. As logical after observing Figure 5.2, the occupations with the highest employ-
ment are in the Hands terrains and the terrain of Rising automation, while the terrain of Collapsing
automation and the Automation terrain present less populated occupations.

FIGURE 5.2: A-terrains and US employment

TABLE 5.11: A-terrains and US employment

SOC code SOC label Auto. Auto. 2020 US
degree prob. emp.

Occupations with highest US employment in the Hands terrain
291141 Registered Nurses .254 .009 3080.1
434051 Customer Service Representatives .46 .55 2923.4
111021 General and Operations Managers .32 .16 2411.9
372011 Janitors and Cleaners, Except

Maids and Housekeeping Cleaners
.23 .66 2217

431011 First-Line Supervisors of Office
and Administrative Support
Workers

.33 .014 1487.3

Continued on next page
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Continued from previous page

SOC code SOC label Auto. Auto. 2020 US
degree prob. emp.

Occupations with highest US employment in the Rising automation terrain
412031 Retail Salespersons .29 .92 3835
412011 Cashiers .23 .97 3379.1
439061 Office Clerks, General .28 .96 2933.9
537062 Laborers and Freight, Stock, and

Material Movers, Hand
.27 .85 2821.7

436014 Secretaries and Administrative
Assistants, Except Legal, Medical,
and Executive

.2 .96 2053.5

Occupations with highest US employment in the Collapsing automation terrain
119111 Medical and Health Services

Managers
.55 .073 429.8

514041 Machinists .51 .65 363
518031 Water and Wastewater Treatment

Plant and System Operators
.5 .61 122.1

434181 Reservation and Transportation
Ticket Agents and Travel Clerks

.65 .61 101.6

532011 Airline Pilots, Copilots, and Flight
Engineers

.65 .18 74.7

Occupations with highest US employment in the Automation terrain
132011 Accountants and Auditors .51 .94 1392.2
131031 Claims Adjusters, Examiners, and

Investigators
.62 .98 333.8

132072 Loan Officers .55 .98 322.1
439041 Insurance Claims and Policy

Processing Clerks
.56 .98 277.9

516011 Laundry and Dry-Cleaning
Workers

.57 .71 175.5

Transformative digitalization and US employment

Once we have observed the mapping of the destructive side of digitalization for the US employment,
we move on to observe the mapping of the impact of transformative digitalization on US employment.

Symmetrically to the destructive digitalization mapping section, we first look at the occupations
with the highest and lowest scores in AI advances, as well as the occupations with the highest and
lowest scores in exposure to AI. We observe that the occupations in these extremes relative to the values
of the AI variables are not highly populated with employment. In fact, the occupation in Table 5.12 that
encompasses the largest number of jobs (Fitness Trainers and Aerobics Instructors with 309.8 thousand
jobs) does not contain even 10% of jobs with respect to the occupation that has the most employment in
our sample of 605 occupations.
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TABLE 5.12: Transformative digitalization measures and US employment

SOC code SOC label AI adv. AI exp. 2020 US
score score emp.

Occupations with the highest scores in AI advances
532011 Airline Pilots, Copilots, and Flight

Engineers
6.5372877 -.207 74.7

192012 Physicists 5.9072075 1.346 17.4
532012 Commercial Pilots 5.6820021 -.182 39.2
532021 Air Traffic Controllers 5.6803937 1.153 24.5
291021 Dentists, General 5.4143696 -.181 120.3

Occupations with the lowest scores in AI advances
419012 Models 1.416977 -1.122 2.7
419041 Telemarketers 1.5099856 1.118 119.7
393093 Locker Room, Coatroom, and

Dressing Room Attendants
1.5152327 -.345 12

452041 Graders and Sorters, Agricultural
Products

1.5719488 -1.371 32.5

395093 Shampooers 1.8387299 -.905 10.8
Occupations with the highest scores in AI exposure

132061 Financial Examiners 4.0538263 1.526 70.8
152011 Actuaries 4.2314577 1.516 27.7
132031 Budget Analysts 3.3814559 1.503 52.5
231023 Judges, Magistrate Judges, and

Magistrates
3.9404573 1.496 29.4

433061 Procurement Clerks 2.515487 1.488 63
Occupations with the lowest scores in AI exposure

272031 Dancers 3.2159972 -2.67 9
399031 Fitness Trainers and Aerobics

Instructors
2.8135116 -2.112 309.8

473014 Helpers–Painters, Paperhangers,
Plasterers, and Stucco Masons

2.4188068 -2.045 9.4

472171 Reinforcing Iron and Rebar
Workers

3.039923 -1.971 22.1

516021 Pressers, Textile, Garment, and
Related Materials

1.9422904 -1.95 30.3

Figure 5.3 shows the mapping of US employment with respect to transformative digitalization,
where again each bubble represents an occupation and the size of each bubble reflects the total num-
ber of jobs in the occupation. From the outset, we observe a clear difference between the mapping
of destructive digitalization and the mapping of transformative digitalization. While in the case of
the destructive digitalization mapping we observe a great polarization of the observations due to the
U-shape in the histogram of the computerization probability, in the case of the transformative digital-
ization we observe a mapping with the observations very centralized due to the bell shapes histograms
that present both variables of transformative digitalization. In this way, we notice that this mapping
looks like a nebula in which the occupations are distributed almost equally in the 4 I-terrains with some
fewer occupations in the terrain of Future AI. Complementing the Figure 5.3, Table 5.13 collects the 5
most populated occupations in each I-terrain.
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FIGURE 5.3: I-terrains and US employment

TABLE 5.13: I-terrains and US employment

SOC code SOC label AI adv. AI exp. 2020 US
score score emp.

Occupations with highest US employment in the HI terrain
412011 Cashiers 2.4718328 -.248 3379.1
537062 Laborers and Freight, Stock, and

Material Movers, Hand
2.7752922 -1.709 2821.7

372011 Janitors and Cleaners, Except
Maids and Housekeeping Cleaners

2.0306945 -1.436 2217

353031 Waiters and Waitresses 2.2320356 -.948 2023.2
372012 Maids and Housekeeping Cleaners 1.8491679 -1.481 1212.8

Occupations with highest US employment in the Narrow AI terrain
533032 Heavy and Tractor-Trailer Truck

Drivers
3.9176085 -1.149 1951.6

499071 Maintenance and Repair Workers,
General

3.6678796 -1.014 1444.1

472061 Construction Laborers 3.0904617 -1.623 1285.2
533033 Light Truck or Delivery Services

Drivers
3.1734586 -1.121 1035.8

399011 Childcare Workers 3.4429889 -.383 992.4
Occupations with highest US employment in the Future AI terrain

Continued on next page
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Continued from previous page

SOC code SOC label AI adv. AI exp. 2020 US
score score emp.

412031 Retail Salespersons 2.7165029 .087 3835
439061 Office Clerks, General 2.6438301 .989 2933.9
434051 Customer Service Representatives 2.939477 .956 2923.4
436014 Secretaries and Administrative

Assistants, Except Legal, Medical,
and Executive

2.5797276 1.099 2053.5

433031 Bookkeeping, Accounting, and
Auditing Clerks

2.8479018 1.04 1620

Occupations with highest US employment in the AI terrain
291141 Registered Nurses 4.2665367 .229 3080.1
111021 General and Operations Managers 3.3521471 .575 2411.9
431011 First-Line Supervisors of Office

and Administrative Support
Workers

3.3072996 1.039 1487.3

132011 Accountants and Auditors 3.6984756 1.482 1392.2
411011 First-Line Supervisors of Retail

Sales Workers
3.3579433 .019 1390.6

5.4.3 Occupational terrains and US employment

Once we have mapped the US employment from the destructive and transformative sides of digitaliza-
tion separately to observe how US employment looks on each of the sides of digitalization, we propose
mappings for the US employment that collect both sides of digitalization in a coherent way from a triple
temporal point of view. In this sense, we collect a triple temporal dimension proposing three mappings:
one retrospective, another prospective and another of total vision.

For the retrospective vision, we consider the backward-looking occupational terrains taking into
account the automation degree and the AI advances (Table 5.6). For the prospective vision, we consider
the forward-looking occupational terrains taking into account the computerization probability and the
exposure to AI (Table 5.7). Finally, for the total vision we consider the full vision occupational terrains
involving automation effects and AI effects (Table 5.8).

The backward-looking vision

Figure 5.4 shows the mapping of employment in the 605 occupations considered with respect to the
retrospective view of transformative and destructive digitalization. Therefore, it shows the current situ-
ation of US employment with respect to AI advances and the automation degree of occupations. As we
can verify, in general, the occupations do not cross the threshold of 50% automation degree, with few
occupations being found in the current machine terrains and the terrain of advancing to collapse occu-
pations. In the upper right corner of the figure, we observe an occupation that stands out for its high
score in AI advances and its high automation degree. In particular, this occupation (Airline Pilots, Copi-
lots, and Flight Engineers) accounts for a score of 6.5 in AI advances and a 65% degree of automation,
which is consistent with the development of the drones and air navigation industry.

Complementing the vision collected by Figure 5.4, Table 5.14 expose the details in the AI advances
score, automation degree and total employment of the highest populated occupation of each backward-
looking occupational terrain (the largest bubbles in each terrain of Figure 5.4).
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FIGURE 5.4: Backward-looking occupational terrains: US employment

TABLE 5.14: Backward-looking occupational terrains: US employment

SOC code SOC label Auto. AI adv. 2020 US
degree score emp.

Occupations with highest US employment in the Actual human terrain
412031 Retail Salespersons .29 2.7165029 3835
412011 Cashiers .23 2.4718328 3379.1
439061 Office Clerks, General .28 2.6438301 2933.9
434051 Customer Service Representatives .46 2.939477 2923.4
537062 Laborers and Freight, Stock, and

Material Movers, Hand
.27 2.7752922 2821.7

Occupations with highest US employment in the Actual stars terrain
291141 Registered Nurses .254 4.2665367 3080.1
111021 General and Operations Managers .32 3.3521471 2411.9
533032 Heavy and Tractor-Trailer Truck

Drivers
.22 3.9176085 1951.6

431011 First-Line Supervisors of Office
and Administrative Support
Workers

.33 3.3072996 1487.3

499071 Maintenance and Repair Workers,
General

.37 3.6678796 1444.1

Occupations with highest US employment in the Advancing to collapse terrain

Continued on next page
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Continued from previous page

SOC code SOC label Auto. AI adv. 2020 US
degree score emp.

132072 Loan Officers .55 2.8359137 322.1
439041 Insurance Claims and Policy

Processing Clerks
.56 2.5882883 277.9

516011 Laundry and Dry-Cleaning
Workers

.57 2.2247977 175.5

537081 Refuse and Recyclable Material
Collectors

.52 2.9198558 140.5

433051 Payroll and Timekeeping Clerks .51 2.4858935 137.3
Occupations with highest US employment in the Actual machine terrain

132011 Accountants and Auditors .51 3.6984756 1392.2
119111 Medical and Health Services

Managers
.55 3.6610198 429.8

514041 Machinists .51 3.7895303 363
131031 Claims Adjusters, Examiners, and

Investigators
.62 3.4276185 333.8

514081 Multiple Machine Tool Setters,
Operators, and Tenders, Metal and
Plastic

.51 3.453315 138.4

The forward-looking vision

Figure 5.5 shows the mapping of US employment with respect to the prospective vision of digitaliza-
tion, taking into account exposure to AI and the computerization probability. At first glance, clearly
differentiated from the retrospective view of the impact of digitalization on employment, we observe
that a high number of occupations are in the expected machine terrain and in the terrain of occupations
expected to collapse. This figure highlights the fact that, although the technological wave is undoubt-
edly already having important effects on labor markets, digitalization is currently more about expected
potential effects than actual current progresses.

In Table 5.15, we observe that in this case Figure 5.5 includes occupations that account for a large
share of employment in the US both in the expected machine terrain and in the terrain of occupations
expected to collapse. Therefore, it is to be expected that if the predictions of Frey and Osborne (2017)
finally come true, there may indeed be turmoil in the US labor markets such that there will be a large
number of job losses and displacements. In this sense, the occupational field of the expected stars also
accounts for a wide range of occupations that have a large share of employment in the US, having a
high exposure to AI and a low computerization probability. On the other hand, while we see that there
is a high number of occupations in the expected human terrain, this fact must be qualified since, as we
observe in Table 5.15, among the expected human terrain occupations with the highest number of jobs
in the US, 4 of those 5 exceed the 0.6 computerization probability.
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FIGURE 5.5: Forward-looking occupational terrains: US employment

TABLE 5.15: Forward-looking occupational terrains: US employment

SOC code SOC label Auto. AI exp. 2020 US
prob. score emp.

Occupations with highest US employment in the Expected human terrain
372011 Janitors and Cleaners, Except

Maids and Housekeeping Cleaners
.66 -1.436 2217

499071 Maintenance and Repair Workers,
General

.64 -1.014 1444.1

372012 Maids and Housekeeping Cleaners .69 -1.481 1212.8
533033 Light Truck or Delivery Services

Drivers
.69 -1.121 1035.8

399011 Childcare Workers .084 -.383 992.4
Occupations with highest US employment in the Expected stars terrain

291141 Registered Nurses .009 .229 3080.1
434051 Customer Service Representatives .55 .956 2923.4
111021 General and Operations Managers .16 .575 2411.5
431011 First-Line Supervisors of Office

and Administrative Support
Workers

.014 1.039 1487.3

411011 First-Line Supervisors of Retail
Sales Workers

.28 .019 1390.6

Continued on next page
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Continued from previous page

SOC code SOC label Auto. AI exp. 2020 US
prob. score emp.

Occupations with highest US employment in the Expected to collapse terrain
412011 Cashiers .97 -.248 3379.1
537062 Laborers and Freight, Stock, and

Material Movers, Hand
.85 -1.709 2821.7

353031 Waiters and Waitresses .94 -.948 2023.2
533032 Heavy and Tractor-Trailer Truck

Drivers
.79 -1.149 1951.6

472061 Construction Laborers .88 -1.623 1285.2
Occupations with highest US employment in the Expected machine terrain

412031 Retail Salespersons .92 .087 3835
439061 Office Clerks, General .96 .989 2933.9
436014 Secretaries and Administrative

Assistants, Except Legal, Medical,
and Executive

.96 1.099 2053.5

433031 Bookkeeping, Accounting, and
Auditing Clerks

.98 1.04 1620

132011 Accountants and Auditors .94 1.482 1392.2

5.4.4 Extended occupational terrains

Considering the classification of Fossen and Sorgner (2019) exposed in Table 5.1, we can argue that this
classification can be extended taking into account the extra technological measures from the automation
side and the intelligence side. More precisely, the Fossen’s and Sorgner’s (2019) classification considers
the computerization probability (prospective vision) as the destructive digitalization measure and the
AI advances (retrospective vision) as the transformative digitalization measure. Therefore, adding both
a retrospective vision to the automation side and a prospective vision to the AI side harbors space for
more detailed extended occupational terrains.

In all the tables in this section, it is represented in green when the extended occupational terrain
matches the classification of Fossen and Sorgner (2019), while when a new occupational terrain is pro-
posed as a result of the extension, the imbalance that makes that this new terrain is not framed within
those considered by Fossen and Sorgner (2019) is outlined in red.

Extended occupational terrains (A-side)

On the destructive digitalization side, Fossen and Sorgner (2019) measure the effect of automation using
the variable proposed by Frey and Osborne (2017). However, on the transformative digitalization side,
they use the variable proposed by Felten et al. (2018). This creates a mismatch in the time perspective
of both variables since Frey and Osborne (2017) are based on expert predictions about the future while
Felten et al. (2018) are based on past developments. Therefore, we add the degree of automation variable
as a lagging control variable to the Fossen and Sorgner (2019) classification. As we can observe in
Table 5.16, for 348 occupations (41 + 272 + 11 + 24) the binary variables of degree and computerization
probability coincide. However, there are other 257 occupations for which there is a mismatch in both
binary variables collecting retrospective and prospective destructive digitalization effects. Therefore,
we can extend 4 new occupational terrains to the classification proposed by Fossen and Sorgner (2019).

First, we find an occupational terrain in which occupations present low AI advances, low comput-
erization probability but high automation degree. In the Fossen’s and Sorgner’s (2019) classification
this occupation would be labelled as an occupation in the human terrain. We label these occupations
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as the Automated human terrain and it results logical that there are only two occupations in this new
occupational terrain since it is not common for an occupation to have a low automation risk while being
highly automated.

Second, we find an occupational terrain in which occupations present high AI advances, low com-
puterization probability but high automation degree. In the Fossen’s and Sorgner’s (2019) classification
this occupation would be labelled as a Rising star occupation. However, we label these occupations as
the Automated stars and we find 7 occupations in this new occupational terrain.

Third, we find an occupational terrain in which occupations present low AI advances, high comput-
erization probability but low automation degree. In the Fossen’s and Sorgner’s (2019) classification this
occupation would be labelled as a Collapsing occupation. In consequence, we label them as the Rising
collapse occupations and we find 96 occupations in this new occupational terrain. It results logical that
almost hundred observations are in this new occupational terrain since it is common that occupations
expected to be automated currently present a low automation degree.

Finally, we find an occupational terrain in which occupations present high AI advances and high
computerization probability but low automation degree. In the Fossen’s and Sorgner’s (2019) classifi-
cation this occupation would be labelled as a Machine terrain occupation. In our case, we label them
as the Rising machine terrain occupations and we find 152 occupations in this new occupational ter-
rain. Then, the largest mismatches between the Fossen’s and Sorgner’s (2019) classification and these
extended occupational terrains are derived from the fact of occupations at high automation risk having
a current low automation degree, particularly, 248 occupations from the 605 considered.

TABLE 5.16: Extended occupational terrains: automation side

Occupational
terrains

(Fossen and
Sorgner,

2019)

AI
advances

Automation
probability

Automation
degree A-terrains

Extended
occupational
terrains (A-

side)

Occupations
in the
terrain

Human
terrain Low Low Low Hands

terrain
Human
terrain 41

Rising star High Low Low Hands
terrain Rising star 272

Collapsing
occupation Low High High Automation

terrain
Collapsing
occupation 11

Machine
terrain High High High Automation

terrain
Machine
terrain 24

Human
terrain Low Low High Collapsing

automation

Automated
human
terrain

2

Rising star High Low High Collapsing
automation

Automated
star 7

Collapsing
occupation Low High Low Rising

automation
Rising

collapse 96

Machine
terrain High High Low Rising

automation

Rising
machine
terrain

152

Extended occupational terrains (I-side)

The same extension of the classification of Fossen and Sorgner (2019) that we have proposed on the side
of destructive digitalization can be carried out on the side of transformative digitalization. In order to
do so, besides considering current AI advances, we also consider the AI exposure (Felten et al., 2021).
Therefore, when the AI advances matches the AI exposure the Fossen and Sorgner (2019) occupational
terrain considered will remain. However, when the AI advances does no match the AI exposure, a
new occupational terrain will be considered. In this case, as we observe in Table 5.17, 312 occupations
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(32 + 176 + 66 + 38) matches the Fossen and Sorgner (2019) classification while other 293 occupations
(11 + 103 + 41 + 138) are situated in new occupational terrains.

The first extension in the occupational terrains arises with the considerations of occupations pre-
senting a low computerization probability and low AI advances but high AI exposure. We classify these
occupations as the Future star occupations. Next, occupations with low computerization probability
and high AI advances but low AI exposure are classified as Collapsing stars. Accordingly, occupations
with high computerization probability and low AI advances but high AI exposure are labelled as Future
machine terrain. Finally, occupations with high computerization probability and high AI advances but
low AI exposure are labelled as Narrow machine terrain.

TABLE 5.17: Extended occupational terrains: intelligence side

Occupational
terrains

(Fossen and
Sorgner,

2019)

Computerization
probability
(Frey and

Osborne, 2017)

AI
advances
(Felten et
al., 2018)

Exposure
to AI

(Felten et
al., 2021)

I-
terrains

Extended
occupational

terrains (I-
side)

Occupation
in the
terrain

Human
terrain Low Low Low HI

terrain
Human
terrain 32

Rising star Low High High AI
terrain Rising star 176

Collapsing
occupation High Low Low HI

terrain
Collapsing
occupation 66

Machine
terrain High High High AI

terrain
Machine
terrain 38

Human
terrain Low Low High Future

AI Future star 11

Rising star Low High Low Narrow
AI

Collapsing
star 103

Collapsing
occupation High Low High Future

AI

Future
machine
terrain

41

Machine
terrain High High Low Narrow

AI

Narrow
machine
terrain

138

Extended occupational terrains

In the same way that we have developed the previous extended occupational terrains, we can consider
an occupational classification that extends the one proposed by Fossen and Sorgner (2019) both from
the destructive side and from the transformative side of digitalization. Therefore, it is a classification of
extended occupational terrains that includes a double temporal perspective (retrospective and prospec-
tive) on each side of digitalization. In this case we find 16 different occupational terrains. In the first
place, we have 4 occupational terrains in which both temporal perspectives on each side of digitalization
fit, thus fitting with the four occupational terrains proposed by Fossen and Sorgner (2019). Secondly,
we find 4 occupational fields whose temporal perspective fits in the destructive side of digitalization
but does not fit in the transformative side of digitalization. Thirdly, we find the inverse case in which
the temporal perspective fits on the transformative side of digitalization while it does not fit on the de-
structive side. Finally, we find 4 occupational terrains in which both temporal perspectives do not fit on
either side of digitalization.

As we observe in Table 5.18, on this occasion we find that the Automated human terrain contains no
occupations, while there are other occupational terrains containing just a few occupations (Collapsing
occupations with 4; Machine terrain with 6 occupations; Future stars with 9; Future machine terrain
with 7 occupations; Automated stars with 4; From collapsing occupation to rising star with 2; From
machine terrain to human terrain with 3). In these extended occupational terrains only 214 from the 605
occupations matches the Fossen and Sorgner (2019) classification.
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TABLE 5.18: Extended occupational terrains

Destructive digitalization Transformative digitalization
Backward-

looking
vision

Forward-
looking
vision

Full-
looking
vision

Backward-
looking
vision

Forward-
looking
vision

Full-
looking
vision

Automation
degree

Automation
probability A-terrains AI

advances
Exposure

to AI
I-

terrains

Occupational
terrains

(Fossen and
Sorgner,

2019)

Extended
occupational

terrains

Occ.
in the
terrain

Low Low Hands
terrain Low Low HI

terrain
Human
terrain

Human
terrain 32

Low Low Hands
terrain High High AI

terrain Rising star Rising star 172

High High Automation
terrain Low Low HI

terrain
Collapsing
occupation

Collapsing
occupation 4

High High Automation
terrain High High AI

terrain
Machine
terrain

Machine
terrain 6

Low Low Hands
terrain Low High Future

AI
Human
terrain Future star 9

Low Low Hands
terrain High Low Narrow

AI Rising star Collapsing
star 100

High High Automation
terrain Low High Future

AI
Collapsing
occupation

Future
machine
terrain

7

High High Automation
terrain High Low Narrow

AI
Machine
terrain

Narrow
machine
terrain

18

High Low Collapsing
automation Low Low HI

terrain
Human
terrain

Automated
human
terrain

0

High Low Collapsing
automation High High AI

terrain Rising star Automated
star 4

Low High Rising
automation Low Low HI

terrain
Collapsing
occupation

Rising
collapse 62

Low High Rising
automation High High AI

terrain
Machine
terrain

Rising
machine
terrain

32

High Low Collapsing
automation Low High Future

AI
Human
terrain

From
collapsing
occupation

to rising star

2

High Low Collapsing
automation High Low Narrow

AI Rising stars

From
machine
terrain to
human
terrain

3

Low High Rising
automation Low High Future

AI
Collapsing

occupations

From
human

terrain to
machine
terrain

34

Low High Rising
automation High Low Narrow

AI
Machine
terrain

From rising
star to

collapsing
occupation

120

5.5 Conclusions

Technology has been a driving force in the transformation of labor markets for centuries. In the current
era of the fourth industrial revolution, robotics and AI have emerged as the primary factors influencing
the future of work. These technologies have the power to displace, transform, create, and destroy jobs,
making it essential for economists and policymakers to understand their potential impact.
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In this study, we navigate the complex landscape of digitalization to unravel the implications of tech-
nological change on the immediate future of work. By analyzing 605 occupations, we assess the current
state of automation and AI advances, as well as the expectations for future developments in these areas.
Through the construction of various occupational typologies, our research offers a visual representation
of the ongoing digitalization process, providing a simplified yet comprehensive understanding of its
impact on the labor market.

Our findings suggest that, at least in the short term and given the current level of AI exposure across
occupations, there is no need for Luddite alarmism. Both the destructive and transformative forces of
digital technological change are expected to reshape labor markets with overall positive outcomes in
employment creation. However, these conclusions come with certain caveats. The rapid pace of tech-
nological evolution since the late 1960s indicates that even occupations created today, driven by the
emergence of new technologies, may eventually become susceptible to automation by future genera-
tions of AI.

Indeed, AI technology, while currently displaying a labor-friendly face, holds the potential to re-
place even itself (He et al., 2021). This underscores the need for continuous monitoring and adaptation
of policies and strategies to ensure that labor markets remain resilient and inclusive in the face of on-
going technological advancements. In conclusion, our study provides valuable insights for researchers,
policymakers, and businesses as they navigate the ever-evolving landscape of work and strive to create
a sustainable, equitable, and prosperous future for all.
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Chapter 6

Early retired or automatized?
Evidence from the survey of health, ageing
and retirement in Europe

6.1 Introduction

New labour-saving technologies such as Machine Learning and Robotics promise to bring profound
changes to the labour markets in the coming years (Autor, 2015) and the current technological change is
expected to produce a challenge for certain groups of population like older workers close to retirement
age (Alcover et al., 2021). Moreover, the ageing of the population in industrialised countries threatens
the sustainability of public finances, in such a way that governments are extending the statutory re-
tirement age (European Commission, 2021). These two facts - the automation process and the ageing
of the population - lead to a potential contradiction between governments trying to extend statutory
retirement ages and labour markets expelling older workers due to current technological changes.

On the one hand, in recent years, experts in Artificial Intelligence (AI) contemplated the capacity of
this new technology to assume tasks previously realised by humans. 1 At the same time, it has been
analysed the capacity of robotics to affect labour markets by reducing the employment rate (Acemoglu
and Restrepo, 2020a) and by increasing the productivity of workers (Graetz and Michaels, 2018). How-
ever, although it has been proven that robots adoption reduces the employment rate, the implications
of this employment rate reduction for the early retirement transitions have not been broadly studied.

On the other hand, the aged population of industrialised countries makes it impossible to face the
current industrial revolution with the same policies used during the previous ones (i.e., the delay of
the statutory early retirement age or the provision of generous early retirement schemes). The concept
of retirement as an old-age social insurance program appeared for the first time in 1889 designed by
Otto von Bismarck, setting the retirement age at 70 years old. The life expectancy of the population in
Germany then was around 40 years old, which made this statement realisable. Almost a century later,
the early retirement provisions were adopted during the deindustrialization process between the late
1960s and 1970s and immediately after the first severe decrease in industrial employment (Conde-Ruiz
and Galasso, 2003). Life expectancy in the countries of the EU then was around 70 years old. Nowadays,
with a life expectancy over 80 years old and the deepest technological change ever going on, the idea
of incentivizing early retirement transitions for redundant middle-aged workers is out of the debate. In
fact, governments are not only delaying statutory retirement ages but also establishing more restrictive
qualifying conditions, such as longer minimum contributory periods, stronger disincentives to retire,
penalties for early retirement and bonuses for postponing retirement (European Commission, 2021).

1Grace et al. (2018) report the researchers’ beliefs of AI outperforming humans in many activities in the next ten years, such
as translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by 2027), working in retail (by 2031),
writing a bestselling book (by 2049), and working as a surgeon (by 2053). Their results from a large survey of machine learning
researchers on their beliefs about progress in AI show that experts in AI believe there is a 50% chance of AI outperforming
humans in all tasks in 45 years and automating all human jobs in 120 years.
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Therefore, what are then the solutions for middle-aged workers seeking to continue their working
lives after being displaced by new technologies? In order to elaborate the proper policies on ageing,
we measure the impact of new labour-saving technologies in the early retirement decisions. This chap-
ter contributes to the literature by analysing the implications of the automation process for the early
retirement transitions in 26 European countries.

In order to perform our analysis, we consider microdata from the Survey on Health, Ageing and
Retirement in Europe (SHARE), the automation degree provided by O∗ NET (2022) and the automation
risk provided by Frey and Osborne (2017). Furthermore, we propose a novel occupational classification
in 4 terrains depending on the automation impacts experienced by different occupations (A-terrains
classification), inspired by the one proposed by Fossen and Sorgner (2019).

The effect of new labour-saving technologies in the early retirement decisions has important implica-
tions in the design of public policies on ageing and retirement. Specifically, we find differentiated effects
in terms of gender, education and job status, indicating that policies pursuing the enlargement of the
working lives of middle-aged workers should be focused on training programs and self-employment
benefits and incentives for this group of people. These training programs and self-employment incen-
tives should be designed to guide the labour reintegration of these workers to perform the occupations
at the lowest automation risk. In addition, special attention should be provided to the implications of
the current technological change regarding the gender gap.

The rest of the chapter is organised as follows. Section 2 presents the literature review and the
main hypotheses of this study. Section 3 collects the data used in the analysis. Section 4 details the
modelling approach. Section 5 shows results. Section 6 presents some robustness checks. Finally, section
7 summarises the conclusions derived from this research.

6.2 Literature review and hypotheses

This section presents the literature review and the main hypotheses. First, we consider some relevant
works on the impact of automation in the labour market. Second, we examine some other noteworthy
articles from the extensive literature on the determinants of early retirement. Third, we explore the re-
lation between new technologies and older workers. Finally, we reveal certain works in the intersection
of these strands of the literature, where this work fits, and state the main hypotheses to be tested in the
empirical analysis.

6.2.1 The impact of automation in the labour market

Recently, many research works have been disseminated in order to clarify current automation processes.
One of the main approaches in this analysis of the impact of new technologies in labour markets is that
of the potential automation of tasks. In this line, Manyika et al. (2017) analyse more than 2,000 work
activities across 800 occupations discovering that about half of all the activities people are paid to do
in the world’s workforce could potentially be automated by adapting currently demonstrated technolo-
gies. They conclude that, while less than 5 percent of all occupations can be automated entirely using
demonstrated technologies, about 60 percent of all occupations have at least 30 percent of constituent
activities that could be automated.

Following this approach of tasks automation, at the next level of aggregation, we find out the discus-
sion of potential occupations automation. Interpreting the definition of occupation as a set of tasks and
calculating the automation potential of each task that makes up an occupation, we obtain data on the au-
tomation potential of concrete occupations. By applying this reasoning, Frey and Osborne (2017) assign
a specific probability of automation to 702 occupations using the SOC-2010 classification of occupations.
In this broadly cited paper, the authors affirm that 47% of all United States (US) employment is at high
risk of automation. Later, these results have been revisited by other researchers offering different visions
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of the automation process and incorporating other probabilities of automation to the discussion. 2 In
their study, Frey and Osborne (2017) use the term computerization, as automation by computer means.
Since practically all automation processes in the XXI century are computer-based, literature increasingly
applies the terms computerization and automation as synonyms, as we do here.

Fossen and Sorgner (2019) investigate the impact of new digital technologies upon occupations
arguing that these effects may be both destructive and transformative depending on the destructive
repercussions of digitalization (substitution of human labour) and the transformative consequences of
digitalization (complementation of human labour). They distinguish between four broad groups of oc-
cupations that differ with regard to the impact of digitalization upon them: (i) Rising star occupations,
characterised by the low destructive and high transformative effects of digitalization, (ii) Collapsing oc-
cupations, with high risk of destructive effects, (iii) Human terrain occupations, with low risks of both
destructive and transformative digitalization, and (iv) Machine terrain occupations, affected by both
types of effects.

Another approach to analyse the effect of automation on the labour market is the using of data on
robot adoption from the part of industries. Acemoglu and Restrepo (2020a) analyse the effect of the in-
crease in industrial robot usage between 1990 and 2007 on US local labour markets, by using a model in
which robots compete against human labour in the production of different tasks, to find that one more
robot per thousand workers reduces the employment to population ratio by about 0.18-0.34 percentage
points and wages by 0.25-0.5 percent. Furthermore, following this approach, Graetz and Michaels (2018)
analyse the economic contributions of modern industrial robots by using panel data on robot adoption
within industries in 17 countries from 1993-2007 as well as instrumental variables that rely on robots’
comparative advantage in specific tasks. They find that increased robot use contributed approximately
0.36 percentage points to annual labour productivity growth, at the same time it raises total factor pro-
ductivity and reduces output prices. Contrary to the research of Acemoglu and Restrepo (2020a), they
argue that robots did not significantly decrease total employment, although they did reduce low-skilled
workers’ employment share.

To summarise the main today’s challenges for this strand of literature, we highlight the three main
sources of uncertainty about the macroeconomic implications of the technological change (Jimeno, 2019):
the degree to which new machines and human labour will be complements or substitutes in the pro-
duction of existing tasks embedded in the production of goods and services, the speed to which tasks
performed by human labour could be automated, and the rate at which new tasks are created. Then, the
new technological changes (robots, artificial intelligence, automation) may increase productivity growth
but at the risk of having disruptive effects on employment and wages. 3

6.2.2 The determinants of the early retirement decision

The early retirement decision is a topic that has been widely covered in the literature. Among the main
determinants of the decision, literature have traditionally highlighted personal circumstances such as fi-
nancial situation and health or macroeconomic situations, as the political regime in which an individual
lives or the generosity of the social security system.

About the generosity of early retirement provisions, Conde-Ruiz and Galasso (2003) show, in a de-
scriptive analysis of eleven OECD countries, that early retirement provisions were adopted during the
deindustrialization process.

Regarding the implications of political regimes for the early retirement transitions, Bauman and
Madero-Cabib (2021) find that early retirement is more frequent in socialdemocratic regimes (Denmark

2For example, other authors claim that the same task may have different implications in different occupations. In this line,
Arntz et al. (2016, 2017) repeated the analysis of Frey and Osborne (2017) setting the focus on tasks rather than on occupations
to conclude that only 9% of the US occupations have high risk of automation.

3See Lee and Lee (2021) for a debate about the degree of disruptiveness of the Fourth Industrial Revolution.
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and Sweden) than in liberal welfare regimes (Chile and United States). In addition, they find that ad-
verse health conditions are more frequent among early retirees in liberal but not in social-democratic
regimes.

Regarding the influence of personal characteristics of an individual into the early retirement de-
cision, Hernoes et al. (2000) indicate that financial incentives, educational background and industry
affiliation have an influence on retirement behaviour. By applying a broader approach, Wilson et al.
(2020) identify seven early retirement factors: ill health, good health, workplace issues, the work itself,
ageism, social norms and having achieved personal financial or pension requirement criteria. Then,
they propose six solutions to enable the enlargement of working life: occupational health programs,
workplace enhancements, work adjustments, addressing ageism, changing social norms and pension
changes.

Furthermore, early retirement literature has analysed in detail the implications for early retirement
of concrete policies. In this line, Schils (2008) finds that pursuing a shift from public to private early re-
tirement schemes can lower the incidence of early retirement and, at the same time, the policy can make
early retirement more selective, as only the best paid workers are able to afford it. Besides, Hermansen
(2015) shows that working in a company that offers reduced working hours to older workers does not
have an effect on the relative risk of a 61- or 62-year-old withdrawing a full contractual pension in the
next two years of their employment.

The SHARE - used in this study - has been broadly applied to the analysis of early retirement tran-
sitions. By using this survey, Siegrist et al. (2007) find a consistent association of a poor psychosocial
quality of work with intended early retirement among older employees across all European countries
and highlight the necessity of improved investments into better quality of work, in particular increased
control and an appropriate balance between efforts spent and rewards received at work. Markova and
Tosheva (2020) choose Bulgaria as the setting to analyse the determinants of an early exit from the labour
market, finding that the early retirement plans are significantly shaped by gender, finding out that late
career Bulgarians with a primary education are more likely to opt for early retirement than to look for
low-quality jobs or be unemployed. Angelini et al. (2009) use the SHARE to describe an "early retire-
ment trap" in which the interaction between early retirement and a limited use of financial markets
produces financial hardship late in life. Hochman and Lewin-Epstein (2013) find that grandparenthood
increases an individual’s chances of looking forward to retiring early. This decision would not be forced
by the need to care for their grandchildren since the effect observed is stronger in those countries that
provide extensive childcare support. 4 Schmidthuber et al. (2021) use the SHARE to investigate how
labour market and pension measures associated with active ageing influence retirement behaviour in
Austria and Germany. Furthermore, we can find studies establishing a connection of retirement with a
healthy diet (Celidoni et al., 2020), social relationships (Comi et al., 2020), or self-employment (Axelrad
and Tur-Sinai, 2021).

6.2.3 New technologies and older workers

The technological displacement of older workers and their retraining needs is an ancient topic in eco-
nomic literature. We find several early statements about older workers suffering greater hardship due to
automation (Stern, 1955; Weinberg, 1956; Diebold, 1959; Snyder, 1962), indicating that the extended job-
lessness suffered by older workers sometimes is not mitigated by the acquisition of a new skill (Weber,
1963).

The interaction between digitalization and the ageing of the population is another nexus of interest
in the nowadays economic literature. Within this strand of literature, Phiromswad et al. (2022) examine
and estimate the interaction effects of automation and population ageing on the labour market, to find
that automation and population ageing have large and statistically significant effects on employment
growth but not on earnings growth. These statistically significant effects are also explored by Acemoglu

4In this line, Van Bavel and De Winter (2013), using the European Social Survey, find that becoming a grandparent speeds
up retirement, especially at the round ages of 55 and 60 years.
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and Restrepo (2022), who describe the ageing of the population as an augmenting-automation process,
highlighting that ageing leads to greater industrial automation with a more intensive use and develop-
ment of robots. Regarding this fact, Jimeno (2019) argues that it is likely that even though population
ageing creates incentives for automation, per capita growth will slow down during the current demo-
graphic transition.

Recently, the term "digital ageism" is gaining prominence, indicating that many older people find
it difficult to navigate the digital sphere and to use online services (see, for instance, Manor and Her-
scovici, 2021). For the particular case of older workers, the competitive disadvantage managing new
technologies has been highlighted by several studies, remarking that the relative deterioration of job
prospects for older workers implies that this age group increasingly has more difficulties to adapt to
technological progress (Schmidpeter and Winter-Ebmer, 2021). For instance, Fezzani et al. (2010) exam-
ine whether motor control difficulty has an impact on the acquisition of a computer task and whether
such motor difficulty has the same impact for young and older adults, concluding that motor difficulty
has a detrimental effect only for older adults.

Borghans and ter Weel (2002) examine the computer use of older workers to conclude that older
workers embody less computer skills than younger workers, highlighting that the main distinction
lies between the 20-29 year old workers and the others. Regarding this computer use, Birdi et al
(1997), prove, in an observational field study, that due to age-related limitations in cognitive capacities,
older workers make significantly more intellectual level errors because these levels are more cognitive-
resource intensive. In this line, Adler (1988) highlights the perception of greater flexibility of younger
workers compared to older workers as a factor for this significant hardship, indicating that older work-
ers are less likely to have the requisite new skills and often presumed to be less able to adapt. Van Dalen
et al. (2010) examine stereotypical perceptions of employers and employees regarding the productivity
of young and older workers in the Netherlands, finding that both employers and employees rate the
productivity of older workers substantially lower than that of younger workers. Regarding these per-
ceptions, McClure (2018) found that technophobes in the US - those who fear automation - tend to be
older, female, and have lower education.

This phenomenon regarding the technological hardship of older workers has been studied in several
countries. For instance, Ivanov et al. (2020) use data from Bulgaria to conclude that the human life cy-
cle influences how a human looks upon the threat of automation in the workplace, since they find that
younger people are more hopeful and flexible while older people are less flexible and less willing to
invest time in retooling themselves for the workplace. Heywood et al. (2011), using German establish-
ment data, find that establishments with jobs that require use of computers are less likely to hire older
workers. Daveri and Maliranta (2007) study the case of Finland to find that the skills of older workers
have been challenged by the unusually fast pace of the IT revolution in that country. Hirsch et al. (2000)
examine the hiring opportunities of older US workers, finding reduced opportunities for older workers
in occupations with steep wage profiles, pension benefits and computer usage.

Related to the technological hardship, some studies have documented that older workers receive less
training than their younger counterparts, while experiencing extra learning difficulties. For instance,
Dychtwald et al. (2004) annotate that most human resource practices are often explicitly or implicitly
biased against older workers, 5 pointing out that older workers (age 55 plus) receive on average less
than half the amount of training that any of their younger cohorts. This training gap of older workers
with respect to younger counterparts is more pronounced if we consider that older workers within this
age range will typically require up to twice as much time to master a new application or technology
if it is weakly related to prior knowledge (Charness, 2006). In addition, lack of confidence in their
relevant abilities is another possible source of the difficulties that the elderly may encounter in mastering
computer technologies (Marquié et al., 2002).

5Slowed performance, decreased ability to learn new skills, increased accidents, rigidity, resistance to supervision, irritabil-
ity, and poor health are among some of the stereotypical perceptions of the older worker (Stanger, 1985).
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These extra learning difficulties for older workers match the statements developed by Bartel and
Sicherman (1990) indicating that, according to the theory of human capital, technological change influ-
ence the retirement decision of older workers in two ways: (i) workers in industries that are charac-
terised by high rates of technological change will have later retirement ages because these industries
require larger amounts of on-the-job training and (ii) an unexpected change in the industry’s rate of
technological change will induce older workers to retire sooner because the required amount of training
will be an unattractive investment.

Wong and Tetrick (2017) highlight that older workers may choose to learn how to navigate new
computer systems based on their interest in technology, focusing their attention on achieving a sense of
mastery despite common stereotypes. In this sense, automation may be seen for older workers as an
opportunity (instead of as a threat) to shift away from physically arduous duties and diversify their job
tasks. Indeed, the replacement of physically demanding tasks with the use of home-based communica-
tion and information technologies could also allow the older worker to remain employed (Dropkin et al.,
2016). In fact, other studies have shown that older workers are as flexible, trainable, and cost-effective
as younger employees (McNaught and Barth, 1992; Sterns and Miklos, 1995), while indicating that older
workers are not much worse than their younger counterparts in the real-world context in terms of mak-
ing errors in computerbased work (Birdi et al., 1997). Older workers also show comparable performance
on multiple telecommuting tasks to their younger colleagues (Sharit et al., 2004).

6.2.4 Considering automation as a determinant of the early retirement decision

We can find the consideration of automation as a possible cause of early retirement in documents from
the 60s. In Barfield and Morgan (1969) we can read "...having experienced a change in the nature of
one’s job (for example, automation or other technological change) seems associated with having retired
or planning to retire early". In this line, Bazzoli (1985) considered that economic variables play a more
relevant role than health in retirement decisions.

More recently, Dorn and Sousa-Poza (2005) wonder if early retirement is a free or forced decision to
conclude that, although the early retirement decision is usually explained as a supply-side phenomenon,
it can also be a demand-side phenomenon arising from the firm’s profit maximisation behaviour. These
authors give special relevance to the distinction between ’voluntary’ and ’involuntary’ early retirement,
finding the latter particularly widespread in Continental Europe (Dorn and Sousa-Poza, 2010).

Ahituv and Zeira (2011) combine the concepts of early retirement and technical progress to find that
technical progress has two opposite correlations with early retirement: while it has a negative effect on
labour supply of older workers, it raises wages on average and thus increases the incentive to remain at
work.

Finally, an exception for the lack of evidence connecting the process of automation with the early
retirement transitions would be the work developed by Yashiro et al. (2022), who measure this connec-
tion for the case of Finland by using the automation probability provided by Nedelkoska and Quintini
(2018). Another exception is the study developed by Hudomiet and Willis (2021), whose results indicate
that many older workers retired earlier than "normal" in the US when automation first penetrated their
occupations, suggesting that older workers who are close to the end of their working lives may be forced
into early retirement if it is not optimal for them to make human capital investments compensating their
skills obsolescence.

6.2.5 Hypotheses

According to Ahituv and Zeira (2011), every technical change involves two effects for older workers:
the wage effect - raised aggregate wages - and the erosion effect - the learning efforts dedicated to the
new technologies pays off less gains since they have shorter career horizons. In this case, we expect
the erosion effect outperforming the wage effect in the automation technical change since capitalised
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software investment raises worker earnings at a rate that declines after the age of 50 , to about zero
beyond 65 (Barth et al., 2022).

Reinforcing this first hypothesis, Georgieff and Milanez (2021) evidence that occupationlevel job
tenure has fallen more in occupations at high risk of automation, being this negative effect particularly
pronounced among older workers. This fact highlights that the stronger declines in job stability among
workers in high-risk occupations have mostly affected older workers. Concretely regarding the im-
pact of automation in the length of working life, Hudomiet and Willis (2021) analyse how automation
affected the labour market outcomes of older workers between 1984 and 2017 in the US, finding that
there was a temporary knowledge gap between younger and older workers in most occupations that
shortened the working lives of older workers and it decreased their wages.

Dychtwald et al. (2004) sketches that because costs and premiums increase with age, employers
have a disincentive to retain older workers. This consideration can get accentuated if due to technolog-
ical advancement and new capital price reduction, it results budget attractive to computerised certain
productive processes involving older workers. Another important consideration is that not only direct
substitution with new technologies is produced, but also firms may have incentives to substitute older
workers for younger workers with higher skills regarding new technologies. In fact, by studying the
productivity-wage gaps among age groups, it has been shown that young workers are paid below and
older workers above their marginal productivity (Cataldi et al., 2011). Furthermore, it has been proven
that technological change influences the retirement decision of older workers (Bartel and Sicherman,
1990). Thus, our first hypothesis states as follows:

H1. Workers facing a higher impact of automation in their current occupation are more likely to retire early.

The literature has documented that women have a higher automation risk (Egana-delSol et al., 2022)
and value early retirement more than men (Dano et al., 2005). In addition, literature has also collected
evidence of age discrimination in hiring against older women, especially those near retirement age
(Neumark et al., 2019). Thus, we expect to find that automation influences the early retirement decision
differently depending on the gender of the individual and formulate our second hypotheses as follows:

H2a. Female workers are more likely to retire early than male workers, independently of the automation
process.

H2b. The early retirement probability of female workers is more affected by automation than the early retire-
ment probability of male workers.

Macroeconomic models have presented automation as a process in which unskilled workers are
displaced by the combination formed by equipment capital and skilled workers. Using this capital-skill
complementarity assumption, Krusell et al. (2000) explain the evolution of the skill premium in the US
from the 1970’s. Under a similar assumption, Sachs and Kotlikoff (2012) present a simple framework in
which smart machines substitute directly for young unskilled labour, whereas they are complementary
to older skilled workers.

This phenomenon of older skilled workers complementing new capital devices has been also stud-
ied at the microeconomic level. For instance, Biagi et al. (2013) find evidence of older employees who
use a PC at work having a higher probability of remaining employed in the future. Friedberg (2003)
argues that impending retirement, rather than age alone, explains why older workers use computers
less than prime-age workers do, highlighting that computer users retire later than non-users. Schleife
(2006), using German data, finds a strong and negative relationship between the age of workers and
computer use, with a significantly positive correlation of educational level and occupational status on
computer use. Then, although older workers are less likely to use computers, educational level is posi-
tively correlated with computer use.

Based on the aforementioned evidence, we expect the early retirement probabilities of workers with
higher education to remain unaffected by the automation risk, while the early retirement probabilities
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of the rest of workers are significantly impacted by automation risk. Therefore, we hypothesise the
following:

H3a. Workers with higher education are less likely to retire early than workers without higher education,
independently of the automation process.

H3b. The early retirement probability of workers with higher education is not significantly affected by au-
tomation.

The retirement behaviour of self-employed workers is different from that of employees or civil ser-
vants (Sappleton and Lourenco, 2015). This different behaviour has been covered by the literature,
indicating that, in general, self-employed people tend to work longer than individuals employed in or-
ganisations (Parker and Rougier, 2007). The fact that the self-employed generally perceive their jobs to
be more "autonomous" than employees (Hundley, 2002), being able to self-direct the content of work-
related tasks, is one of the characteristics that create the gap in retirement time preferences between
selfemployed and employees (Zwier et al., 2020). In addition, transitions to self-employment at old ages
have been documented as a bridge to retirement (Nolan and Barret, 2019; Alcover et al., 2021). These
transitions to self-employment of the elderly to delay retirement may be exacerbated by automation
processes. The risk of job loss due to destructive effects of digitalization may enhance the decision to
become self-employed because of a lack of alternative opportunities in dependent employment (Fossen
and Sorgner, 2021; Shapiro and Mandelman, 2021). In this context, the appearance of digital technolo-
gies may create incentives for both retiring earlier-due to a lack of interest or capacity to adopt the new
technology, that may jeopardize the business- as well as for retiring later -to maximize the benefits from
the learning efforts to digitalize their businesses to improve customers satisfaction-.

All in all, the above arguments, the procedural utility experienced by self-employed workers (Benz
and Frey, 2008) and their autonomy to adapt their jobs to changing environments lead us to hypothesise
the following:

H4a. Self-employed workers are less likely to retire early than employees or civil servants, independently of
the automation process.

H4b. Automation affects the early retirement probability of the self-employed workers differently compared to
employees and civil servants.

6.3 Data

Our analysis relies upon 3 levels and 5 data sources, as it is detailed below. In the first data level, we
use microdata from the Survey on Health, Ageing and Retirement in Europe (SHARE) as a baseline to
add the other two levels of data. In the second level, we have data linking occupations with automation
measures from two sources: (i) Frey and Osborne (2017) for the automation risk and (ii) O*NET (2022)
for the automation degree. The selection of these two automation measures aims to offer a full vision
of the automation process collecting both the backward-looking and the forward-looking impacts of
automation in occupations. Hence, we can extract conclusions about whether the automation degree
or the automation risk are triggering early retirement transitions. Finally, in the third level, we have
macroeconomic data to control the economic situation by country (real GDP growth rate, from the World
Bank; and harmonised unemployment rate, from Eurostat) and the generosity of social security system
(old-aged pensions in PPS per inhabitant, Eurostat). This information about data level and sources is
summarised in Table 6.1.

The SHARE is a research infrastructure carried out from 2004 until today, accounting for 480,000
in-depth interviews with 140,000 people aged 50 or older from 28 European countries and Israel. In fact,
SHARE is the largest pan-European social science panel study providing internationally comparable
longitudinal micro data which allow insights in the fields of public health and socio-economic living
conditions of European individuals. From 2004, SHARE has released 8 waves (being the third wave
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TABLE 6.1: Data levels and sources

Data level Data source
Microdata SHARE (Eurofound)
Early retirement decision, gender, age, cohabiting status,
health, financial situation, education, job characteristics

Measures for technological change by occupation
Automation risk Frey and Osborne (2017)
Automation degree O*NET (2022)

Macroeconomic data by country
Real GDP growth rate World Bank
Harmonised unemployment rate and old-aged pensions Eurostat
in PPS per inhabitant

specialised in health and the eighth wave consisting in a COVID-19 survey). In our case, we live aside
these special waves 3 and 8 .

In particular, this chapter uses data from the generated Job Episodes Panel. 6 Then, we merge
some extra information of respondents from waves 1, 2, 4, 5, 6 and 7. In order to develop our work, it
has been particularly important the information provided in the retrospective modules of wave 7 , since
they contain information about all working lives of respondents with high degree of detail. Within these
modules, we can find the 2008 International Standard Classification of Occupations (ISCO-2008) 4-digits
code for all occupations that respondents realised in their working lives. Therefore, these modules result
crucial to merge the technological measures of automation degree and risk.

After merging all the information required for our analysis into a single database, we finally stick
with 26 European countries, as 3 of the countries in the SHARE (Israel, Ireland and The Netherlands)
are lost because of data unavailability (for example, we do not have a disaggregation at 4-digit level for
occupations in Ireland). Then, our geographical coverage is the following: Austria, Germany, Sweden,
Spain, Italy, France, Denmark, Greece, Switzerland, Belgium, Czech Republic, Poland, Luxembourg,
Hungary, Portugal, Slovenia, Estonia, Croatia, Lithuania, Bulgaria, Cyprus, Finland, Latvia, Malta, Ro-
mania, Slovakia.

The job episodes panel and the retrospective information contained in the different waves allow
us to follow the individuals for their entire life since birth. However, for assuring representativeness
of our results and given that we are trying to measure the impact of the current technological change
in the early retirement decisions, we restrict our sample so that (i) time coverage spans 14 years from
2004 to 2017 and (ii) individuals are over 50 , which is the age from which individuals are eligible to be
interviewed at SHARE.

Then, the sample is composed by men and women over 50 and younger than their statutory re-
tirement age who are workers (employees, civil servants or self-employed workers) in period t and
either (i) become early retirees in period t + 1 (WOt → ERt+1) or (ii) remain as workers in period t +
1 (WOt → WOt+1). Finally, our sample is composed of 118,467 observations, corresponding to 17,506
individuals. In this sample, we find 6,340 transitions from work to early retirement.

6.4 Modelling approach

Our dependent variable (early retirement) takes value 1 when a worker decides to retire before his
statutory retirement age and 0 when the individual remains working. Thus, given the binary nature of

6https://doi.org/10.6103/SHARE.jep.710. See Brugiavini et al. (2019) and Antonova et al. (2014) for methodological
details.
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our dependent variable, we estimate the probability of early retirement using logit models and report
average marginal effects. 7

As we aforementioned, the main explicative variables are the automation risk (Frey and Osborne,
2017), the automation degree (ONET, 2022), and the technological classification of occupations -A-terrains
classification-constructed using the two aforementioned variables. While the automation risk variable categorises
occupations according to their susceptibility to computerisation, based on advances in Machine Learning and Mo-
bile Robotics (forward-looking vision), the automation degree variable indicates the current automation degree of
the occupation (backward-looking vision). 8 Our destructive digitalization measures rely on the Occupational
Information Network, ONET database, compiled by the US Department of Labor, which is a database of
quantitative indicators of occupational requirements, workforce characteristics, and occupation-specific
information that constitutes the primary occupational database in the US. The O*NET Data Collection
Program provides several hundred descriptive ratings based on O∗NET questionnaire responses by
sampled workers and occupation experts, providing direct information that is usually difficult to mea-
sure. 9

The first measure considered, the automation risk, is the computerization probability from Frey and
Osborne (2017), a measure based on experts predictions regarding potential developments in Machine
Learning and robotics. Concretely, the measure captures the risk of the replacement of human workers
by machines in the next 10-20 years based on expert judgments and selected characteristics of occupa-
tions from the O∗NET database. The study by Frey and Osborne (2017) consists of two stages. First,
technology experts provide estimates for 71 occupations regarding their automation suitability over
the next 20 years. Second, this experts-ranked list of occupations encompasses a training data set for
a machine learning algorithm that classifies the remaining occupations in the O∗NET database based
on job requirements identified as computerization bottlenecks (perception and manipulation, creative
intelligence and social intelligence).

The second measure considered is the automation degree from the O ∗ NET database, a measure
collecting the current automation degree of occupations. This variable can be found in the database
within the consideration of Work Context. More precisely, the variable is framed in the category of
Structural Job Characteristics, being part of the subset of variables that measure the relative amounts
of routine versus challenging work that the worker will perform as part of a specific occupation. This
variable has been previously used for research purposes to investigate the effect of automation levels on
US interstate migration (Okamoto, 2019).

We adapt these measures to the 4-digits ISCO08 classification collected by the SHARE database as
follows. The automation risk is provided for 702 occupations according to the SOC10 classification, so
we establish a direct crosswalk from the 6-digits SOC10 classification to the 4-digits ISCO08 classifica-
tion. The automation degree is provided for 873 occupations according to O∗ NET SOC codes, so we
establish a crosswalk from O*NET SOC to the SOC18, then a crosswalk from the SOC18 to the SOC10
and finally a crosswalk between the 6-digits SOC10 classifications and the 4-digits ISCO08 classifica-
tion. Since ISCO08 is a more aggregated classification than SOC10, we account for automation risk and
automation degree measures for 407 occupations.

7Our results are robust to several specifications of the variance covariance matrix corresponding to the parameter estimates.
In addition, we also check if the panel-level variance component is important, but the likelihood-ratio tests performed point
for the use of the pooled estimator. Standard errors are clustered at the individual level.

8In our analysis, automation risk and automation degree are included as continuous variables, so that we estimate how the
probability of early retirement changes when these variables increase in one percentage point. Then, from these continuous
variables we construct dummy variables that take value 1 when the automation degree/risk is higher than a predetermined
threshold, as it is explained below. These dichotomized versions of the main variables are used in the analysis when looking
for differentiated effects of automation for different groups of individuals presented in section 5 below. We have also estimated
those models with interactions using the continuous versions of the automation variables. Results are similar to those obtained
when using the dichotomised versions of the automation variables.

9More information about O∗ NET database can be found at https://www.onetcenter.org/database.html
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TABLE 6.2: Classification of occupations by automation impact: A-terrains classification.

Automation risk
Low High

Automation degree
High

Collapsing automation
(CA)

Automation terrain
(AT)

Low
Hands terrain

(HT)
Rising automation

(RA)

In order to combine both the forward-looking impact of automation upon occupations, and its
backward-looking effect, the proposed classification includes four different types of occupations, as
summarised in table 6.2 .10

This technological classification is inspired by the one proposed by Fossen and Sorgner (2019). While
their classification collects both destructive and transformative digitalization, our classification focuses
on destructive digitalization involving both a backward-looking and a forward-looking measure of this
technological phenomenon. Specifically, the Fossen’s and Sorgner’s (2019) classification uses a measure
of AI advances (Felten et al., 2018) to collect the effect of transformative digitalization and the Frey and
Osborne (2017) measure of automation risk to collect the effect of destructive digitization. It could be
argued that the AI advances measure is a backward-looking variable that looks at the current advances
that already exist in AI while the Frey’s and Osborne’s (2017) variable is a forward-looking variable
based on experts’ opinions about potential developments in Machine Learning and robotics. Conse-
quently, our classification differs from Fossen and Sorgner’s (2019) in the sense that we replaced their
backward-looking measure for transformative digitalization with a backward-looking measure for de-
structive digitalization, creating a classification that encompasses only destructive digitalization rather
than digitalization in general. To the best of our knowledge, this is the first classification of occupa-
tions regarding destructive digitalization considering both its backward-looking and forward-looking
dimensions.

Thus, depending on their affectation by the automation degree or the automation risk, occupations
can be classified in four different categories. First, occupations with a low degree of automation as well
as a low automation risk would be in the Hands terrain. Second, occupations with a low degree of au-
tomation but a high automation risk would be in the Rising automation terrain. In this terrain, although
the current automation degree is low, it is expected to be automated in the following years. Third,
occupations with a high degree of automation but a low automation risk would be in the Collapsing au-
tomation terrain. Although occupations in this terrain possess a current high automation degree, they
are not expected to be fully automated in the near future. Finally, when we have both a high degree of
automation and a high automation risk, the occupation would be in the Automation terrain. Therefore,
the variable for the classification of A-terrains takes values from 1 to 4 depending on the classification
of the occupation within the four groups considered.

Our control variables include information about demographics, employment and the macroeco-
nomic environment. Thus, we control for gender, age, cohabiting status, physical health -measured in a
1-5 scale from Excellent (1) to Poor (5)-, financial situation -measured as the ability to make ends meet in
a 1-4 scale from With great difficulty (1) to Easily (4)-, and having higher education. Regarding employ-
ment variables, we consider the job status, which includes three categories (employees -private sector-,

10The thresholds for classifying occupations are 70% for the automation risk (this variable takes values from 0.39% to 99% in
the sample) and 30% for the automation degree (this variable takes values from 5 to 66 in the sample). While the 70% threshold
for the high automation risk was set by Frey and Osborne (2017), we set the threshold for the high automation degree at 30%,
close to the median value of the variable (28%). Our results hold when the automation degree threshold is equated to the
median value of the variable.
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civil servants -public sector-, self-employed workers), the sector of activity (primary sector, manufac-
turing and construction, and services) and a variable indicating if the individual is working full time or
not. In order to control for macroeconomic environment, we use the real GDP growth, the harmonised
unemployment rate and the expenditure in old-aged pensions in PPS per inhabitant. 11 We include a
variable collecting the effect of the social security system generosity of each country, as it has a strong
effect incentivizing the early retirement decision. 12 Last, we use country and wave dummies.

6.5 Results

This section shows the main results of this study, divided in three parts. First, we depict the descriptive
statistics and we show the mapping of occupations for the early retirement transitions in our sample.
Second, we analyse the association between automation and the probability of early retirement, looking
for differentiated effects by gender, education and job status. Finally, we present some additional tests
that give confidence to our main results.

6.5.1 Descriptive statistics and the mapping of early retirement transitions in A - terrains

In this subsection, we present a descriptive analysis of our data and offer a vision of the early retirement
transitions by occupation in their corresponding A-terrains.

Table A6.1 in the Appendix presents some descriptive statistics of our sample. These descriptive
statistics are profiled firstly for the whole sample, then only for the observations regarding the transi-
tions to early retirement and finally for the rest of the observations. As we can observe, there are some
conspicuous differences in the value of some variables for observations regarding the switch to early
retirement and the rest of observations. First, the mean automation risk is almost 4% higher when the
switch to early retirement is produced, while its standard deviation accounts for 1.5% less. We can also
find that the mean automation degree is slightly higher for the early retirees, although with the same
standard deviation. These differences are also observable in the A-terrains, as, in the switch to early
retirement, there are less occupations in the Hands terrain and more in the Automation terrain. About
job status, we can find a lower percentage of employees and self-employed while a larger percentage
of civil servants in the transitions to early retirement. As logical, the percentage of workers with higher
education is lower among early retirees. Furthermore, we can see that the percentage of occupations in
the services sector is lower in early retirement transitions and, as indicated by literature, GDP’s growth
is lower for these observations.

Now that we have described some statistics, we offer a vision of all early retirement transitions in
our sample relying on our A-terrains classification. In Figure 6.1 we can find a graph collecting 6,340
early retirement transitions from 387 different occupations. Every bubble matches a concrete occupation,
being its centre at the point determined by its automation risk in the x-axis and its automation degree
measure in the y-axis. The size of each bubble depends on the number of early retirement transitions
that took place in the period 2004-2017 from that precise occupation. The two perpendicular red lines
delimit the four A-terrains considered in this research, as presented in Table 6.2 . As we can observe,
early retirement transitions are similarly divided among the different terrains, with a lower number of
transitions from the Collapsing automation terrain. Specifically, a 26% of the transitions occurred from
the Hands terrain, an 11% from the Collapsing automation terrain, a 33% from the Rising automation
terrain and a 30% from the Automation terrain.

11An equivalent measure would be the Expenditure in social protection -old age function- in PPS per inhabitant, also from
Eurostat, as both variables are highly correlated and show very similar results.

12OCDE countries have been documented by Blöndal and Scarpetta (1997). If we want to look for specific examples
analysing European countries we can find, for example, Blundell et al. (2002) for the case of the UK and Börsch-Supan and
Jürges (2009) for the case of Germany.
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FIGURE 6.1: Early retirement transitions and A-terrains.

Note: Compiled by the authors from the SHARE data and considering the A-terrains classification.
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In Table 6.3 , we can see the data associated with Figure 6.1 with information of education and job
status. In each cell we present the number of early retirement transitions, indicating in parentheses the
shares of early retired individuals in each category.

TABLE 6.3: Early retirement transitions and the A-terrains classification

A-terrains
#Early retirement transitions (share in each category)

Education Job Status Total
No HE HE EM CS SE

HT 868(0.31) 790(0.29) 620(0.28) 923(0.32) 115(0.26) 1, 658(0.30) 26%
CA 472(0.39) 214(0.26) 303(0.31) 266(0.40) 117(0.33) 686(0.34) 11%
RA 1, 915(0.38) 168(0.27) 1, 202(0.36) 676(0.42) 205(0.31) 2, 083(0.37) 33%
AT 1, 610(0.37) 303(0.26) 1, 073(0.33) 706(0.40) 134(0.28) 1, 913(0.35) 30%

Total
4, 865(0.37) 1, 475(0.28) 3, 198(0.33) 2, 571(0.37) 571(0.30) 6, 340(0.34)

100%
77% 23% 50% 41% 9%

Notes: HE: higher education; EM: employee; CS: civil servant; SE: self-employed worker; HT: hands terrain;
CA: collapsing automation; RA: rising automation; AT: automation terrain.

As we observe, only 23% of the early retirement transitions come from workers with higher educa-
tion while the remaining 77% come from workers without higher education. In other words, for every 4
early retirees only 1 has higher education. Also, we observe that only 9% of the early retirement transi-
tions proceed from self-employed workers while the rest come from employees (50%) and civil servants
(41%).

Table 6.4 adds a deeper dimension with respect to Table 6.3 , by incorporating the number of early
retirees that account for higher education for every combination of job status and terrain. Then, as we
can observe, from the 1,913 early retirees that were employees in the Automation terrain, only 303 had
higher education. Alike, from the 2,083 early retirees that were employees in the Rising automation
terrain, only 168 had higher education.

TABLE 6.4: Early retirement transitions and education level by A-terrains and job status

A-terrains
#Early retirement transitions (share in each category)

EM CS SE Total
No HE HE No HE HE No HE HE No HE HE

HT 620(0.28) 923(0.32) 115(0.26) 1, 658(0.30)
395(0.29) 225(0.27) 404(0.35) 519(0.30) 69(0.30) 46(0.22) 868(0.31) 790(0.29)

CA 303(0.31) 266(0.40) 117(0.33) 686(0.34)
202(0.36) 101(0.24) 180(0.46) 86(0.31) 90(0.37) 27(0.24) 472(0.39) 214(0.26)

RA 1, 202(0.36) 676(0.42) 205(0.31) 2, 083(0.37)
1, 112(0.37) 90(0.25) 629(0.43) 47(0.30) 174(0.31) 31(0.32) 1, 915(0.38) 168(0.27)

AT 1, 073(0.33) 706(0.40) 134(0.28) 1, 913(0.35)
895(0.35) 178(0.27) 605(0.44) 101(0.26) 110(0.29) 24(0.25) 1, 610(0.37) 303(0.26)

Total 3, 198(0.33) 2, 571(0.37) 571(0.30) 16, 340(0.34)
2, 604(0.35) 594(0.26) 1, 818(0.41) 753(0.30) 443(0.31) 128(0.25) 4, 865(0.37) 1, 475(0.28

Notes: HE: higher education; EM: employee; CS: civil servant; SE: self-employed worker; HT: hands terrain;
CA: collapsing automation; RA: rising automation; AT: automation terrain.

Table 6.5 also complements Figure 6.1 by presenting the thirty occupations with higher number of
early retirement transitions in order to develop a brief qualitative analysis.
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It shows the ISCO-08 title of the occupation, the ISCO-08 code, the number of transitions to early
retirement from that occupation, the number of workers in each occupation and the ratio between the
number of transitions and the number of workers, its associated automation risk, the automation degree
and the A-terrain to which the occupation belongs to. The occupations are in descending order by ratio
between number of early retirement transitions and total number of workers.

Within these 30 occupations with higher early retirement transitions, we find 2 occupations in the
Collapsing automation terrain, 9 in the Automation terrain, 10 Rising automation occupations and 9 oc-
cupations from the Hands terrain. We find that 13 of these occupations (almost half) have an associated
automation risk higher than 90%. By contrast, we also find 4 occupations with less than 10% of automa-
tion risk. In sum, the 30 occupations from Table 6.5 account for 2,545 early retirement transitions, which
means that 8% of the 387 occupations account for 40% of the total 6,340 early retirement transitions.

TABLE 6.5: Early retirement transitions and occupation titles.

ISCO-08 Title ISCO-08 #ER
transitions

Total
workers

Ratio:
#ER/ total
workers

Automation
risk

Automation
degree A-terrain

1 Toolmakers and related workers 7222 61 125 .488 93 26.34 RA
2 Bricklayers and related workers 7112 100 211 .474 82 16.5 RA
3 Mail carriers and sorting clerks 4412 57 128 .445 95 45.2 AT

4 Manufacturing labourers not elsewhere
classified 9329 62 143 .434 93 40.88 AT

5 Agricultural and industrial machinery
mechanics and repairers 7233 77 181 .425 88 20.78 RA

6 Motor vehicle mechanics and repairers 7231 67 162 .414 93 11.6 RA
7 Electrical mechanics and fitters 7412 54 137 .394 93 20.69 RA
8 Secondary education teachers 2330 115 297 .387 .78 10 HT
9 Heavy truck and lorry drivers 8332 94 252 .373 79 25.5 RA
10 Secretaries (general) 4120 99 267 .371 96 20 RA
11 Vocational education teachers 2320 56 151 .371 26 12 HT
12 Accounting and bookkeeping clerks 4311 61 168 .363 96 34.5 AT
13 General office clerks 4110 236 659 .358 98 36.5 AT
14 Shopkeepers 5221 92 260 .354 16 32 CA
15 Freight handlers 9333 68 193 .352 85 31.5 AT
16 Accounting associate professionals 3313 104 310 .336 98 34 AT
17 Primary school teachers 2341 109 324 .336 17 18 HT

18 Cleaners and helpers in offices, hotels and
other establishments 9112 123 380 .324 69 26.67 HT

19 Car, taxi and van drivers 8322 66 209 .316 98 28 RA
20 Managing directors and chief executives 1120 67 220 .305 16 30 CA
21 Accountants 2411 58 192 .302 99 47.67 AT
22 Administrative and executive secretaries 3343 55 184 .299 86 30.5 AT
23 Shop sales assistants 5223 159 547 .291 98 28 RA
24 University and higher education teachers 2310 63 218 .289 3.2 15.4 HT
25 Subsistence crop farmers 6310 61 214 .285 87 42 AT
26 Cooks 5120 78 274 .285 96 24.8 RA
27 Nursing professionals 2221 108 391 .276 .9 27.47 HT
28 Domestic cleaners and helpers 9111 54 199 .271 69 27 HT
29 Health care assistants 5321 74 286 .259 47 18.5 HT
30 Child care workers 5311 67 278 .241 8.4 18.25 HT
Note: ER: early retirement.

6.5.2 Early retirement and automation

Here we demonstrate the significance of the automation degree and the automation risk in the early
retirement decisions and then show differentiated effects of automation degree, risk and terrains with
respect to higher gender, education and job status.

Tables 6.6,7 and 8 collect fifteen estimations of logit models. Concretely, Table 6.6 considers the
automation risk as the main regressor, Table 6.7 explores the effect of automation degree and Table 6.8

Universidad Internacional de Andalucía, 2023



130
Chapter 6. Early retired or automatized?

Evidence from the survey of health, ageing and retirement in Europe

presents the results for the automation terrains. Each table collects 5 estimations in which the number of
control variables increase progressively from the first estimate to the last. The first estimation controls
for gender, age, cohabiting status, and includes country and wave dummies. The second estimation
also controls health and financial situation. The third estimation also controls for higher education. The
fourth estimation adds the job characteristics controls: job status, contract type, and industry. The last
estimation also controls for macroeconomic variables: GDP growth, harmonised unemployment rate
and old age pensions in PPS per inhabitant.

TABLE 6.6: Determinants of early retirement transitions with special focus on automation
risk - Forward-looking vision - Logit estimations

Model I II III IV V
Predicted probability (y) 0.0535 0.0535 0.0535 0.0535 0.0535
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
Automation risk (%) 0.27 8.55 *** 0.23 7.17 *** 0.11 3.28 *** 0.11 3.12 *** 0.11 3.13 ***
Controls
Femalea 39.03 15.76 *** 38.84 15.67 *** 38.72 15.64 *** 45.78 16.84 *** 46.01 16.9 ***
Age 34.94 72.96 *** 34.79 72.62 *** 34.91 72.86 *** 35.18 73.54 *** 35.25 73.47 ***
With partnera 9.54 3.5 *** 9.93 3.64 *** 9.28 3.4 *** 10.40 3.85 *** 10.16 3.75 ***
Health (ref. Excellent)

Very good 7.96 2.06 ** 7.92 2.03 ** 8.37 2.15 ** 8.41 2.16 **
Good 20.83 5.55 *** 19.28 5.11 *** 19.38 5.15 *** 19.51 5.19 ***
Fair 36.23 8.26 *** 33.53 7.62 *** 33.53 7.65 *** 33.53 7.66 ***
Poor 64.63 8.59 *** 60.59 8.14 *** 61.66 8.24 *** 62.09 8.29 ***

Ability to make ends meet
(ref. With great difficulty)

With some difficulty 8.99 1.94 * 9.41 2.07 ** 7.50 1.64 8.07 1.77 *
Fairly easily 1.27 0.28 3.47 0.76 2.10 0.46 2.69 0.59
Easily 2.07 0.43 6.65 1.39 4.57 0.95 4.90 1.02

Education
Higher educationa -26.63 -9.8 *** -28.04 -10.33 *** -28.19 -10.39 ***
Job characteristics
Job status (ref. Employee)

Civil servant 18.51 6.35 *** 18.17 6.23 ***
Self-employed -31.48 -9.68 *** -31.47 -9.66 ***

Full timea 27.26 8.55 *** 27.24 8.52 ***
Sector (ref. Primary)

Manufacturing and Construction 3.97 0.82 3.85 0.79
Services -14.55 -3.24 *** -14.89 -3.3 ***

Macroeconomic variables
GDP growth -0.58 -1.03
Harmonised unemployment rate 2.48 5.32 ***
Old age pensions pps per capita 0.02 1.57

Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -18,935.3 -18,855.6 -18,810.8 -18,678.8 -18,660.6
#obs. 118,467 118,467 118,467 118,467 118,467
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

The result of the first estimation in Table 6.6 is telling us that an increase of 1% in the automation risk
augments, on average, the probability of early retirement by 0.27%. In the estimations III-V an increase
of 1% in the automation risk would raise the probability of early retirement by 0.11%. These results
mean, in the case of the first estimate, an increase in the probability of early retirement by 27% when
traversing the spectrum of the variable. We must also bear in mind that this effect can largely vary
between different individuals. In fact, as we observe in figures 6.2, 6.3 and 6.4 and tables 6.9, 6.10 and
6.11, we find differentiated effects for higher gender, education, job status.

Table 6.7 collects the positive significant effect of the automation degree increasing the early retire-
ment probability. As we observe, the significance and the impact of the automation degree is only
slightly reduced when we consider the higher education control. Then, we can conclude that automa-
tion plays a relevant role in the early retirement decision both from a backward-looking and a forward-
looking perspective. Table 6.8 offers the results for the A-terrains as the main regressor, collecting the
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TABLE 6.7: Determinants of early retirement transitions with special focus on automation
degree - Backward-looking vision - Logit estimations

Model VI VII VIII IX X
Predicted probability (y) 0.0535 0.0535 0.0535 0.0535 0.0535
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
Automation degree (%) 0.49 4.13 *** 0.48 4.05 *** 0.30 2.5 ** 0.31 2.53 ** 0.31 2.51 **
Controls
Femalea 37.93 15.39 *** 37.79 15.31 *** 38.20 15.46 *** 45.27 16.64 *** 45.51 16.7 ***
Age 34.88 72.84 *** 34.74 72.55 *** 34.90 72.86 *** 35.18 73.54 *** 35.24 73.47 ***
With partnera 9.27 3.4 *** 9.96 3.65 *** 9.21 3.38 *** 10.35 3.83 *** 10.10 3.73 ***
Health (ref. Excellent)

Very good 7.85 2.05 ** 7.87 2.02 ** 8.35 2.15 ** 8.40 2.16 **
Good 21.57 5.78 *** 19.47 5.17 *** 19.56 5.2 *** 19.68 5.24 ***
Fair 37.93 8.66 *** 34.06 7.75 *** 34.02 7.77 *** 34.01 7.77 ***
Poor 66.39 8.8 *** 60.99 8.18 *** 62.04 8.28 *** 62.48 8.34 ***

Ability to make ends meet
(ref. With great difficulty)

With some difficulty 8.41 1.8 * 9.24 2.03 ** 7.35 1.6 7.91 1.73 *
Fairly easily -0.27 -0.06 3.07 0.67 1.72 0.38 2.31 0.5
Easily -1.24 -0.26 5.73 1.19 3.72 0.77 4.06 0.84

Education
Higher educationa -28.93 -11.36 *** -30.06 -11.74 *** -30.23 -11.81 ***
Job characteristics
Job status (ref. Employee)

Civil servant 18.06 6.21 *** 17.72 6.1 ***
Self-employed -32.07 -9.93 *** -32.07 -9.91 ***

Full timea 26.72 8.33 *** 26.70 8.3 ***
Sector (ref. Primary)
Manufacturing and Construction 3.98 0.82 3.84 0.79
Services -15.08 -3.37 *** -15.44 -3.43 ***
Macroeconomic variables

GDP growth -0.58 -1.03
Harmonised unemployment rate 2.48 5.31 ***
Old age pensions pps per capita 0.02 1.54

Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -18,964.1 -18,873.5 -18,813.0 -18,680.5 -18,662.3
#obs. 118,467 118,467 118,467 118,467 118,467
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

complete vision. As we observe, operating in an occupation in terrains more affected by automation
implies significantly higher early retirement probabilities.

The results presented in Tables 6.6, 6.7 and 6.8 allow us to confirm the Hypothesis 1 of this study,
stating that automation plays an important role increasing the early retirement probability of workers
operating in occupation with higher automation degree and/or at a higher automation risk.

As indicated by Brussevich et al. (2019), women perform more routine tasks, on average, than men
across all sectors and occupations, and these are the tasks most prone to automation. Therefore, female
workers face a higher risk of automation compared to male workers across all occupations. In fact, these
authors estimate that 26 million female jobs in 30 countries (28 OECD member countries, Cyprus, and
Singapore) are at a high risk of being displaced by technology within the next two decades. Specifically,
Brussevich et al. (2018) state that the most disadvantaged group is women with lower secondary edu-
cation or less, with nearly 50 percent at high risk for automation, relative to less than 40 percent of men
with the same education level.

Our work contributes to these contrasted arguments by showing the actual widening of the gender
gap regarding the early retirement decision. As our results in Table 6.9 and Figure 6.2 show, facing a
greater impact of automation (a higher current automation degree or a higher automation expectancy)
implies that women are pushed by new technologies towards the early retirement decision more pow-
erfully than men. In other words, the results show that, being a woman, the fact of being highly affected
by automation makes her probability of transitioning to early pre-retirement change significantly. How-
ever, being highly exposed to automation does not seem to have a significant impact on the probability
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TABLE 6.8: Determinants of early retirement transitions with special focus on A-terrains
Backward & forward-looking vision - Logit estimations

Model XI XII XIII XIV XV
Predicted probability (y) 0.0535 0.0535 0.0535 0.0535 0.0535
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
A-terrains (ref. Hands terrain)

Collapsing automation 10.87 2.73 *** 11.14 2.76 *** 8.06 1.95 * 13.00 3.08 *** 13.09 3.1 ***
Rising automation 23.75 7.97 *** 20.21 6.74 *** 11.15 3.59 *** 13.48 4.22 *** 13.54 4.24 ***
Automation terrain 20.80 7.11 *** 19.29 6.53 *** 12.01 3.94 *** 11.47 3.71 *** 11.43 3.7 ***

Controls
Femalea 40.84 16.23 *** 40.40 16.06 *** 39.66 15.8 *** 46.77 17.09 *** 47.01 17.15 ***
Age 34.92 72.86 *** 34.77 72.54 *** 34.90 72.81 *** 35.17 73.48 *** 35.24 73.4 ***
With partnera 9.41 3.45 *** 9.84 3.6 *** 9.23 3.39 *** 10.32 3.81 *** 10.08 3.72 ***
Health (ref. Excellent)

Very good 8.05 2.09 ** 7.96 2.04 ** 8.43 2.16 ** 8.48 2.18 **
Good 20.81 5.56 *** 19.25 5.1 *** 19.29 5.13 *** 19.41 5.17 ***
Fair 36.70 8.37 *** 33.75 7.68 *** 33.70 7.7 *** 33.70 7.7 ***
Poor 65.11 8.62 *** 60.83 8.15 *** 62.02 8.25 *** 62.46 8.31 ***

Ability to make ends meet
(ref. With great difficulty)

With some difficulty 8.47 1.83 * 9.14 2.01 ** 7.13 1.56 7.69 1.68 *
Fairly easily 0.83 0.18 3.25 0.71 1.88 0.41 2.47 0.54
Easily 1.25 0.26 6.28 1.31 4.12 0.85 4.45 0.92

Education
Higher educationa -26.41 -9.91 *** -27.61 -10.35 *** -27.76 -10.41 ***
Job characteristics
Job status (ref. Employee)

Civil servant 19.34 6.6 *** 19.00 6.48 ***
Self-employed -32.31 -10.02 *** -32.33 -10.01 ***

Full timea 26.31 8.17 *** 26.29 8.14 ***
Sector (ref. Primary)

Manufacturing and Construction 4.58 0.95 4.46 0.92
Services -13.64 -3.04 *** -13.99 -3.1 ***

Macroeconomic variables
GDP growth -0.60 -1.07
Harmonised unemployment rate 2.48 5.32 ***
Old age pensions pps per capita 0.02 1.56

Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -18,934.1 -18,852.6 -18,807.2 -18,672.9 -18,654.7
#obs. 118,467 118,467 118,467 118,467 118,467
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

of early retirement for men.
These results can be also observed in the different slopes for males and females in the graphs of

Figure 6.2 regarding the relation of their early retirement probabilities and their automation levels (de-
gree and risk). In the case of women, we find a positive slope indicating that a high automation degree
and/or risk implies higher early retirement probability while we find a flat slope for males indicating
no change in the early retirement probability when switching from a low to a high automation degree
and/or risk occupation. Moreover, the significance and concrete values associated with these results can
be checked in Table 6.9. Furthermore, as we can observe in the right-graph of Figure 6.2 and Table 6.9
, females account for higher predicted probabilities of early retirement than males at any Automation
terrain, being these predicted probabilities higher in the terrains more affected by automation.

The results shown in Table 6.9 and Figure 6.2 allow us to conclude that hypotheses 2a and 2b of
this study are true, confirming that female workers are more likely to retire early than male workers,
independently of the automation process, finding their early retirement probabilities more affected by
automation.

In the graphs from Figure 6.3, we can observe the different slopes concerning the probability of
early retirement when switching from low to high automation degree/risk for individuals with higher
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FIGURE 6.2: Early retirement probability, automation and gender.

Notes: Predicted probabilities and marginal effects from table 6.9; HT: hands terrain; CA: collapsing automation;
RA: rising automation; AT: automation terrain.

Universidad Internacional de Andalucía, 2023



134
Chapter 6. Early retired or automatized?

Evidence from the survey of health, ageing and retirement in Europe

TABLE 6.9: Predicted probabilities of early retirement and marginal effects by gender.

Predicted
probability

of early
retirement

Marginal effect
of automation

Marginal effect
of female

Gender Male Female Male Female Male Female
dy/dx z-stat dy/dx z-stat dy/dx z-stat dy/dx z-stat

Automation riska

Low 0.0433 0.0627 Ref. Ref. Ref. 0.0194 9.33 ***
High 0.0441 0.0723 0.0008 0.47 0.0096 4.44 *** Ref. 0.0282 15.51 ***
Automation degreeb

Low 0.0434 0.0662 Ref. Ref. Ref. 0.0228 12.68 ***
High 0.0442 0.0710 0.0008 0.54 0.0048 2.23 ** Ref. 0.0268 12.54 ***
A-terrainsc

Hands terrain 0.0413 0.0611 Ref. Ref. Ref. 0.0198 8.47 ***
Collapsing automation 0.0469 0.0681 0.0056 2.09 ** 0.0070 1.82 * Ref. 0.0212 5.10 ***
Rising automation 0.0449 0.0728 0.0036 1.83 * 0.0117 4.17 *** Ref. 0.0280 10.92 ***
Automation terrain 0.0432 0.0719 0.0019 0.95 0.0108 4.16 *** Ref. 0.0287 11.76 ***

Notes: a Predicted probabilities and marginal effects are from a model similar to model V in
table 6.6 but including interaction term between high automation risk and gender.
b Predicted probabilities and marginal effects are from a model similar to model X in
table 6.7 but including interaction term between high automation degree and gender.
c Predicted probabilities and marginal effects are from a model similar to model XV in
table 6.8 but including interaction term between A-terrains and gender.

and no higher education. This slope is more evident for individuals with no higher education while
the slope for individuals with higher education is almost non-noticeable. Indeed, if we focus on the
confidence intervals, they are perfectly differentiated for individuals with no higher education as the
probability of early retirement is significantly larger when the individual carries out a job with high
automation degree/risk. For the case of higher educated workers, the probability of early retirement
does not increase significantly when switching from low automation affected occupation to a high au-
tomation affected occupation, as the confidence intervals to the right and to the left of the x-axis are
not in different positions from the perspective of the y-axis. These results are also collected by Table
6.10 . We can find an explanation for this phenomenon by arguing that workers with different levels of
training can generate different levels of added value even if they perform the same tasks in the same
occupation. This would be another level of heterogeneity to that proposed by Arntz et al. (2016, 2017).
If these authors argue that the tasks of the same occupation in different sectors or companies can widely
vary, we can go further by affirming that the same tasks from the same occupation, even in the same
firm, carried out by workers with different training levels, can derive very different outcomes. In fact, it
is a matter of profit maximisation. If a firm accounts for the technology to automatize an occupation and
the worker performing this occupation is not very productive and does not add value to the firm, this
worker is very likely to go inactive (if he is a middle-age worker, his probability of early retirement will
be higher). However, if a firm accounts for the technology to automatize an occupation but the worker
who performs this occupation has higher education and is very productive as well as an important value
added to the firm, this worker is very likely to remain in his job spot avoiding the automation process.
This idea can also be related with the demand of Non-Routine skills 13, by arguing that, as technology
augments the productivity of high skill occupations (i.e., with strong interactive and analytical content)
while substituting for middle skill occupations (i.e., with higher intensity of routine tasks), it augments
the productivity of highly educated workers while substituting for workers without higher education.

To sum up, we find that workers with no higher education and high automation degree/risk are
more likely to take the early retirement decision. On the other hand, individuals with higher education

13See, for instance, Consoli et al. (2016).
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are less likely to retire early independently of the automation impact. Then, we obtain that, while getting
higher education drops the early retirement probability for both workers at low and high automation
affectation, the transit from a low risk to a high automation impacted occupation only increases the prob-
ability of early retirement significantly for individuals with no higher education. As aforementioned,
the main message collected by Figure 6.3 and Table 6.10 is that, for middleage workers, obtaining higher
education implies getting a shield against early retirement caused by automation.

TABLE 6.10: Predicted probabilities of early retirement and marginal effects by education.

Predicted
probability

of early
retirement

Marginal effect
of automation

Marginal effect
of higher education

Education No HE HE No HE HE No HE HE
dy/dx z-stat dy/dx z-stat dy/dx z-stat dy/dx z-stat

Automation riska

Low 0.0545 0.0410 Ref. Ref. Ref. -0.0135 -7.38 ***
High 0.0602 0.0429 0.0057 3.48 *** 0.0018 0.82 Ref. -0.0174 -8.25 ***
Automation degreeb

Low 0.0570 0.0417 Ref. Ref. Ref. -0.0153 -9.16 ***
High 0.0603 0.0420 0.0033 2.12 ** 0.0003 0.14 Ref. -0.0183 -8.47 ***
A-terrainsc

Hands terrain 0.0513 0.0405 Ref. Ref. Ref. -0.0108 -5.29 ***
Collapsing automation 0.0615 0.0430 0.0102 3.38 *** 0.0026 0.83 Ref. -0.0185 -4.84 ***
Rising automation 0.0604 0.0461 0.0091 4.5 *** 0.0057 1.62 Ref. -0.0142 -4.07 ***
Automation terrain 0.0601 0.0413 0.0088 4.28 *** 0.0008 0.31 Ref. -0.0188 -7.19 ***

Notes: a Predicted probabilities and marginal effects are from a model similar to model V in
table 6.6 but including interaction term between high automation risk and education.
b Predicted probabilities and marginal effects are from a model similar to model X in
table 6.7 but including interaction term between high automation degree and education
c Predicted probabilities and marginal effects are from a model similar to model XV in
table 6.8 but including interaction term between A-terrains and education.
HE: higher education.

In the right-graph of Figure 6.3, we see how the probability of early retirement varies for individuals
in the different Automation terrains depending on the level of education. As we may observe, both in
the graph and in Table 6.10, the lowest predicted probabilities of early retirement are given for individ-
uals with higher education in the Hands terrain and the Automation terrain. This seems like a curious
result indicating that, while it is logical that individuals in the Hands terrain with higher education are
the less likely to go for early retirement, we must also bear in mind that new technology occupying
the Automation terrain are developed, established and controlled by higher educated workers with a
crucial role in the technological change (engineers, computer scientists, etc).

Moreover, the right-side graph in Figure 6.3 denotes that the early retirement probability for workers
with higher education is always lower than this probability for workers with no higher education in the
same automation group. This information can also be found in Table 6.10, where we can see that having
a higher education level always reduces the early retirement probability with a significance level of 1%
at any automation group. To sum up, Figure 6.3 and Table 6.10 tell us that the safest refuge to hide
from early retirement caused by the current technological change is to work in the Hands terrain hav-
ing higher education, while the highest probabilities of early retirement are found for workers without
higher education in the terrains more affected by automation. These results collecting the interaction
between automation and education regarding the early retirement probability allows us to confirm hy-
potheses 3 a and 3 b of this study, stating that workers with higher education are less likely to retire early
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FIGURE 6.3: Early retirement probability, automation and education.

Notes: Predicted probabilities and marginal effects from table 6.10 ; HE : higher education; HT: hands terrain;
CA: collapsing automation; RA: rising automation; AT: automation terrain.
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than workers without higher education, independently of the automation process and maintaining their
early retirement probabilities not significantly affected by automation.

Figure 6.4 and Table 6.11 represent the relation between job status and automation regarding the
probability of early retirement. Again, the three graphs in the figure and the table are providing the
same information from different perspectives, allowing us to obtain a full vision of the interconnection.
In the graphs of Figure 6.4 we can observe how the probability of early retirement changes for workers
going from a low to a high automation degree/risk depending on their job status. The red lines and dots
collect the effect for civil servants, the blue lines and triangles present the switch for employees and the
green dots lines and squares reflect the case of self-employed workers. At first sight, the effect is similar
for employees and civil servants while varying largely for self-employed workers (being opposite for
the case of automation risk, in fact). On the one hand, for the cases of civil servants and employees, we
find positive slopes of the same dimensions at different levels. On the other hand, for the case of self-
employed workers, we find a negative slope reflecting that the probability of early retirement decreases
when the automation risk increases, but not significantly. Then, while the probability of early retirement
for employees and civil servants is increasing with respect to automation degree/risk, the probability
of early retirement for self-employed individuals seems to be unaltered by automation degree/risk.

These results seem to be in line with hypotheses 4a and 4 b. It is important to highlight that the
non-significance of automation risk or degree on early retirement probability of self-employment work-
ers does not imply that self-employment is not affected by automation. Procedural utility experienced
by self-employed workers (Benz and Frey, 2008), their autonomy to adapt their jobs to changing envi-
ronments (Hundley, 2002) and the use of self-employment as a bridge to retirement (Nolan and Barret,
2019; Alcover et al., 2021) as a result of the automation processes (Fossen and Sorgner, 2021; Shapiro
and Mandelman, 2021) give support to the existence of incentives to both retiring earlier as well as for
retiring, that can counterbalance each other.

To sum up, the main message collected from Figure 6.4 and Table 6.11 is that self-employed work-
ers have lower predicted probability of early retirement in every Automation terrain and accounting
for small variations of the predicted probability when switching terrain, while employees and civil ser-
vants account for higher predicted probability in early retirement that can vary broadly when switching
terrain. Furthermore, the gap in predicted probability of early retirement between two individuals from
different job status can be larger or smaller depending on the Automation terrains they belong to. These
results imply that, for middle-aged workers who are unwilling to pursue higher education or start their
own business, the best way to enlarge their working lives at least until retirement age is to look for a job
in the Hands terrain occupations 14. Then, the concrete policies designed for these workers should put
the focus on relocating them from the terrains affected by automation to the Hands terrain occupations.

In addition, for some workers the idea exposed previously that in order to avoid early retirement
caused by automation it would be necessary to obtain higher education or become an entrepreneur may
sound utopic, and these results are providing a new perspective: maybe it is not fully necessary to get
higher education or become selfemployed but to look for a job in the Hands terrain. In fact, it would
be delusional to think that all middle-age workers who have performed the same job (now at high risk
of automation) for decades will easily obtain higher education or start a successful business overnight.
There is a large heterogeneity of characteristics between individuals in the same risky situation of early
retirement from the labour market caused by new technologies. That is why the higher number of
possible solutions, the richer baseline information we will have to elaborate fruitful policies.

6.5.3 Robustness checks

This section offers three additional estimations that give confidence to the robustness of our results.
Firstly, since self-employed workers retirement behaviour largely vary with respect to the retirement

14The Table A6.2 in the appendix collects some occupations of the hands terrain.
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FIGURE 6.4: Early retirement probability, automation and job status.

Notes: Predicted probabilities and marginal effects from table 6.11; EM: employee; CS: civil servant; SE: self-
employed worker; HT: hands terrain; CA: collapsing automation; RA: rising automation; AT: automation terrain.
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TABLE 6.11: Predicted probabilities of early retirement and marginal effects by job status.

Predicted
probability

of early
retirement

Marginal effect
of automation

Marginal effect
of job status

Job status EM CS SE EM CS SE EM CS SE
dy/dx z-stat dy/dx z-stat dy/dx z-stat dy/dx z-stat dy/dx z-stat

Automation riska

Low 0.049 0.058 0.037 Ref. Ref. Ref. Ref. 0.010 4.5 *** -0.011 -4.15 ***
High 0.054 0.064 0.034 0.006 3.17 *** 0.006 2.57 ** -0.003 -1.05 Ref. 0.010 4.92 *** -0.020 -9.42 ***
Automation degreeb

Low 0.051 0.060 0.035 Ref. Ref. Ref. Ref. 0.010 4.91 *** -0.016 -7.35 ***
High 0.054 0.063 0.035 0.003 1.54 0.003 1.29 0.0003 0.1 Ref. 0.010 4.01 *** -0.019 -6.98 ***
A-terrainsc

Hands terrain 0.046 0.057 0.036 Ref. Ref. Ref. Ref. 0.011 4.35 *** -0.010 -2.75 ***
Collapsing automation 0.054 0.064 0.038 0.008 2.34 ** 0.007 1.92 * 0.001 0.21 Ref. 0.010 2.27 ** -0.016 -3.57 ***
Rising automation 0.055 0.066 0.034 0.008 3.8 *** 0.009 3 *** -0.002 -0.6 Ref. 0.011 3.95 *** -0.020 -7.3 ***
Automation terrain 0.054 0.063 0.034 0.008 3.45 *** 0.006 2.34 ** -0.003 -0.69 Ref. 0.009 3.43 *** -0.020 -6.13 ***

Notes: a Predicted probabilities and marginal effects are from a model similar to model V in table 6.6 but
including interaction term between high automation risk and job status.
b Predicted probabilities and marginal effects are from a model similar to model X in table 6.7 but
including interaction term between high automation degree and job status.
c Predicted probabilities and marginal effects are from a model similar to model XV in table 6.8 but
including interaction term between A-terrains and job status.
EM: employee; CS: civil servant; SE: self-employed worker.

behaviour of employees, with self-employed workers commonly intending to retire later as compared
to wage earners (Parker and Rougier, 2007; Kautonen et al., 2012, Hochguertel, 2015), Table A6.3 in the
appendix reproduce models V, X and XV but excluding self-employed workers from the sample. As
expected given our results, the effect of automation in the early retirement decision is greater with this
reduced sample concerning uniquely employees and civil servants. Then, we prove with this robust-
ness check that the particular retirement behaviour of self-employed workers does not alter the results
obtained in the estimations of our study.

Secondly, we expose the relation between automation, early retirement and the intention to retire
early. The SHARE provides a variable collecting the intention to go for early retirement (question "Look-
ing for early retirement in (main) job"), only available for a reduced number of observations. With this
subsample, we estimate the models in Table A6.4, showing that, while logically the intention to retire
early increases the early retirement probability, higher automation degree and/or risk increase the prob-
ability of intending to retire early. This fact highlights that the variable collecting the intention to retire
early is not a measure of the early retirement willingness. Indeed, we do not have a way to clearly dis-
tinguish between voluntary and involuntary early retirement decisions since automation has a strong
positive effect increasing the probability of looking for early retirement. An alternative way to interpret
this phenomenon is that we might consider that intention to early retirement mediates the relationship
between automation and early retirement probability. Using the KHB method (Karlson, Holm, and
Breen 2012; Breen, Karlson, and Holm 2013), we tested for this possible mediating effect and observed
that there exists a significant indirect effect. These results are not reported but are available by request.

Thirdly, we deal with the fact that individuals with the same age residing in countries with different
statutory retirement ages may have different behaviours. In this sense, the early retirement decision of
individuals with the same age residing in different countries facing distinct statutory retirement ages
might differ depending on how long they have to wait until reaching the retirement age. Indeed, they
may get penalised (by benefit reductions) differently for their decision to retire early depending on the
official retirement age in their country of residence. In consequence, Table A6.5 includes as a regressor
the years to statutory retirement age instead of the age control. The variable has a significant negative
effect in the early retirement probability indicating that individuals closer to their retirement ages are
less likely to retire early. Controlling for the year to statutory retirement ages we observe that our
automation variables preserve their significant effect in the early retirement probability.
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6.6 Conclusions

Early retirement policies have been around for about 60 years without supposing a big deal for in-
dustrialised countries. Nowadays, the ageing of the population combined with a technological change
especially aggressive for middle-age workers have made governments rethink and disincentivize these
policies. Nevertheless, few alternatives for potential early retirees have been brought into debate.

The reason why no alternative policies to early retirement have been eventually proposed is that,
traditionally, early retirement has been assumed to be an individual’s decision triggered by preferences.
However, this study suggests the possible existence of forced early retirement not only because of health
issues, but also due to technological change. 15 Controlling for demographic characteristics, health
level, financial situation, previous employment features and country level variables, we find a positive
association between the advance of new technologies - i.e. automation - and early retirement decisions
in Europe.

As we reveal in the literature review, the consideration of automation as an underlying cause of
early retirement has been present in studies since the appearance of these policies although the concrete
effect had not been measured until now. Previously, it was better for governments to pay these extra
provisions for redundant middle-age workers than slowing down technological change with restrictive
labour policies. In fact, the benefits from new technologies for society have been always wider than
the cost they bring for some specific groups of population. However, this approach is very poor in
assuming that workers who previously performed work absorbed by new technologies can no longer
be valuable to the entire human capital of a country. Although the easy way to solve this issue is to
pay generous early retirement or unemployment provisions and look aside, if the wealth generated by
new technological change allows it, better policies that does not left anyone behind can be elaborated,
taking full advantage of both technology and human capital, then maximising the effectiveness of public
expenses.

These policies are needed since just delaying retirement ages can simply result in higher unemploy-
ment rates, as it has been proved by analysing the increase of retirement ages in the past. For example,
Staubli and Zweimüller (2013) consider the effects of a gradual increase in the minimum retirement age
from 60 to 62.2 years for men and from 55 to 57.2 for women in Austria between 2000 and 2006, find-
ing that this policy change reduced retirement by 19 percentage points among affected men and by 25
percentage points among affected women (this supposed an increase in employment of 7 percentage
points among men and 10 percentage points among women), but at the same time, there was an im-
portant spillover effect by increasing the unemployment rate 10 percentage points among men and 11
percentage points among women. 16

Furthermore, as early retirement is logically detrimental for a society due to human capital losses
and a descent in economic growth (Conde-Ruiz and Galasso, 2004), it has also been concluded to be
detrimental for individuals acceding to this policy. Within this strand of the literature, Börsch-Supan and
Schuth (2014) analyse the implications of early retirement for mental health to conclude that cognition
declines with early retirement and the effect on well-being appears to be negative and short-lived rather
than long-lasting and positive. 17 Palmore et al. (1984) denote the consequences of retirement, by
comparing retired and working men, to find that little, if any, differences in health, social activity, life
satisfaction, and happiness were caused by retirement, although they found that early retirement had
stronger effects than retirement at normal ages. Then, they conclude that retirement has different effects
depending on the type of outcome and timing of retirement.

15Perhaps, this fact can be interpreted as one of the underlying reasons for flexible retirement policies failure (Börsch-Supan
et al., 2018).

16On the contrary, Frimmel (2021) also analyses the case of Austria’s reform to conclude that increasing the early retirement
age is not only a feasible way to improve the financial sustainability of public pension systems, but it also improves the
re-integration of elderly unemployed male workers.

17On the contrary, Litwin (2007) finds that early retirement has no effect on life expectancy.
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Then, according to these studies, early retirement would be a fruitful policy if it only achieves to
helping those individuals who take this decision with total wilfulness, 18 by promoting solutions so
the early retirees can have better alternatives avoiding this transition, if it is involuntary. In fact, the
reason why opinions are divided regarding the positive (or negative) effects of the decision to go (or
not) for early retirement can be explained as a matter of freedom in decision making rather than the
decision itself, indicating that the well-being of an individual is greater when he makes the decision
he wants and not the one that circumstances force him to make. Then, from the perspective of welfare
maximisation, the focus should be on promoting alternative policies that avoid the possibility of forced
early retirement rather than eradicating early retirement in general.

We find differentiated effects depending on gender, education level and job status. On the one hand,
regarding the education level, we observe that workers with no higher education and high automation
degree and/or risk are more likely to make the early retirement decision. In addition, individuals with
higher education are less likely to retire early independently of the automation impacts. On the other
hand, regarding the job status, we observe that an increase in the automation degree and/or risk from
low to high is associated with higher probabilities of early retirement for employees in the private sector
and civil servants, but not for self-employed workers. As expected, the probability of early retirement
for self-employed individuals is lower for employees and civil servants, irrespective of the automation.
Finally, we find higher effects of automation on women’s early retirement transitions.

Regarding the A-terrains, we find that self-employed workers, at any terrain, are the individuals
with lower early retirement probability while the civil servants are the individuals more likely to go for
early retirement. Our findings collect that, while being in distinct terrains does not make a difference in
the early retirement probability of selfemployed people, operating in distinct terrains suppose a signif-
icant variance in the early retirement probability of employees and civil servants. In addition, getting
higher education means a significant descend in the early retirement probability in every terrain. In
addition, we find that women account for higher early retirement probabilities at any terrain and these
early retirement probabilities of women are more affected by automation than those of men.

In order to take advantage of the accumulated human capital of middle-aged experienced workers,
mechanisms should be established to prevent their early exist from the labour market: (i) to increase
funding on training programs for these workers 19 instead of establishing generous early retirement
schemes (Fouarge and Schils, 2009) and (ii) to promote bridge self-employment policies for older work-
ers to achieve their statutory retirement age (Axelrad and Tur-Sinai, 2021). With a broader scope, we
can extend the policy recommendation of increasing spending on education beyond the restrictiveness
to older workers and the early retirement decision, since a proper investment in learning and training
policy schemes is advisable in the face of any technological change (Vivarelli, 2013).

These advisable policies should provide special gender scopes since we find that the current tech-
nological wave affects in a clearly differentiated way to men and women, widening the gender gap
regarding the early retirement transitions, although it could be simply a concrete example of the effect
of new technologies in deepening the gender gap considering a broader focus. Ultimately, the fact that

18Isaksson and Johansson (2000) study compared early retirees and people continuing to work over the years following
downsizing with regard to satisfaction, well-being, health, and work centrality, to find that voluntary (as opposed to forced)
choice was directly and positively associated with satisfaction, psychological well-being and health for both groups. In this
line, Maule et al. (1996) study the early retirement decisions of men working in Britain for a large multinational company in
the manufacturing sector to indicate that the decision-making process is complex and cannot be reduced to single-factors like
health or financial status, being the most important factor in the quality of life of early retirees was the matching of expectations
of further work at the point of decision. Smith (2006) points out another relevant difference between voluntary and involuntary
early retirees by observing a significant fall in spending only in the latter’s.

19A broader vision would say that increasing the general spending in education can downsize early retirement transitions
(and/or its negative effects for an individual) whilst increasing life quality. Allel et al. (2021) find that formal education during
childhood and adolescence is associated with a long-term protective effect on health and it attenuates negative health conse-
quences of early retirement transitions. Their results indicate that early retirement is associated with worse health outcomes,
but education fully compensates for the detrimental association with subjective and physical health. Therefore, this research
raises the necessity of adopting a broader vision in the elaboration of policies and programs promoting healthy and active
ageing, considering the influence of formal education in shaping older adults’ health after the transition into retirement.
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new technologies are shortening women’s working lives more aggressively than they are affecting men’s
working lives could be an indication that, in the overall picture, current technological change pushes
women out of the labour market more fiercely than men, creating an alert to a possible broadening of
the gender gap caused by the impact of new technologies.

Finally, for those cases in which the individual with high early retirement probability shows no in-
terest on getting higher education or becoming self-employed, it is fundamental that the delay in retire-
ment ages is complemented by other instruments like the mapping of the best routes for the avoidance
of early retirement in order to help these middle-age workers at high automation risk to continue with
their working lives. In fact, the same technological wave displacing middle-aged workers can be very
useful to their effective relocation as, for example, big data and machine learning, could be the perfect
toolkit to design personalised policies.

Our research is not exempt from limitations. One important limitation relies upon the assumption
that the crosswalk between SOC-10 and ISCO-08 is perfect and the job content of an occupation in the
US is the same as that of an occupation in any of the 26 European countries of our sample. The au-
tomation probabilities have been applied to several analyses targeting European regions. For instance,
Crowley et al. (2021) use them to analyse the vulnerability of European regional labour markets to job
automation, translating through a crosswalk the 702 occupations at US SOC six-digit level present in
Frey and Osborne (2017) to 122 ISCOs at the three-digit level present in the EU Labour Force Survey. As
an example of operationalization of this measure using data from a concrete European country, Gard-
berg et al. (2020) analyse the implications of automation for occupational dynamics in Sweden, adapting
these automation probabilities from the American SOC2010 occupational classifications to the Swedish
counterpart 3-digit SSYK96 via the European ISCO08 occupational code. Our variable collecting the au-
tomation degree presents the same limitations as the automation risk since it belongs to the same data
source from which Frey and Osborne (2017) construct their variable, the O∗NET database.

6.7 Appendix
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TABLE A6.1: Descriptive statistics

Total
sample

Switching
to early retirement (S)

Non switching
to early retirement (NS)

#obs. (#ind.) 118,467 (17,506) 6,340 (6,339) 112,127 (11,167)

Variable Mean
(S.D. overall)

Mean
(S.D. overall)

Mean
(S.D. overall) Min Max

Difference
of means

NS-Sa

Main regressors

Automation risk 62.72%
(37.64)

66.28%
(36.27)

62.52%
(37.71) 0.39 99 -3.76***

Automation degree 27.81%
(9.72)

28.11%
(9.72)

27.79%
(9.72) 5 66 -0.32***

A-terrains 2.56
(1.20)

2.67
(1.16)

2.55
(1.20) 1 4 -0.11***

Hands terrain 31.05% 26.15% 31.32% 0 1 5.17***
Rising automation 10.70% 10.82% 10.69% 0 1 -0.13
Collapsing automation 29.35% 32.85% 29.15% 0 1 -3.70
Automation terrain 28.91% 30.17% 28.83% 0 1 -1.34**
Controls
Female 51.35% 48.20% 51.52% 0 1 3.32***

Age 55.37
(3.58)

59.21
(3.29)

55.15
(3.47) 50 66 -4.05***

With partner 79.98% 80.66% 79.94% 0 1 -0.72

Health 2.84
(1.01)

3.03
(1.02)

2.83
(1.01) 1 5 -0.21***

Excellent 10.85% 8.00% 11.01% 0 1 3.01***
Very good 23.83% 19.32% 24.08% 0 1 4.76***
Good 40.40% 40.82% 40.38% 0 1 -0.44
Fair 20.55% 25.02% 20.30% 0 1 -4.72***
Poor 4.36% 6.85% 4.22% 0 1 -2.62***

Ability to make ends meet 2.88
(0.97)

2.85
(0.97)

2.89
(0.97) 1 4 0.03***

With great difficulty 8.90% 8.86% 8.90% 0 1 0.04
With some difficulty 26.87% 28.64% 26.77% 0 1 -1.87***
Fairly easily 31.07% 30.91% 31.08% 0 1 0.17
Easily 33.16% 31.58% 33.25% 0 1 1.67***
Education
Higher education 30.04% 23.26% 30.42% 0 1 7.15***
Job characteristics

Job status 1.58
(0.68)

1.59
(0.65)

1.58
(0.68) 1 3 0.01

Employee 52.61% 50.44% 52.73% 0 1 2.29***
Civil servant 36.65% 40.55% 36.43% 0 1 -4.12***
Self-employed worker 10.74% 9.01% 10.84% 0 1 1.83***
Full time 86.88% 90.13% 86.69% 0 1 3.43***

Sector 2.59
(0.63)

2.53
(0.65)

2.60
(0.63) 0.07***

Primary 8.14% 9.29% 8.08% 0 1 -1.21***
Manufacturing and Construction 24.26% 28.55% 24.01% 0 1 -4.54***
Services 67.60% 62.16% 67.91% 0 1 5.75***
Macroeconomic variables

GDP growth 1.96
(3.42

1.70
(3.58

1.97
(3.41 -14.84 11.99 0.27***

Harmonised unemployment rate 8.82
(4.38

8.80
(4.63

8.82
(4.36 2.9 27.5 0.02

Old age pensions PPS per capita 2042.28
(889.24)

2001.57
(851.32)

2044.59
(891.28) 504.68 3,929.77 43.01***

Note: a Tests of equality of means between observations not switching to early retirement (NS) and observations switching
to early retirement (S); Ho: Mean (NS) – Mean (S) = 0; * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01.
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TABLE A6.2: Some occupations in the hands terrain

ISCO-08 Title ISCO-08 Automation
risk (%)

Automation
degree (%)

Dieticians and nutritionists 2265 0.39 18
Education methods specialists 2351 0.42 5
Specialist medical practitioners 2212 0.42 22.85
Generalist medical practitioners 2211 0.42 25.34
Audiologists and speech therapists 2266 0.64 23
Secondary education teachers 2330 0.78 10
Nursing professionals 2221 0.9 27.47
Teaching professionals not elsewhere classified 2359 0.95 12.5
Education managers 1345 1 23
Psychologists 2634 1.2 21.75
Information technology trainers 2356 1.4 27
Child care services managers 1341 1.5 28
Special needs teachers 2352 1.6 13.5
Environmental engineers 2143 1.8 23
Research and development managers 1223 1.8 23.58
Building architects 2161 1.8 26
Civil engineers 2142 1.9 27.33
Traditional and complementary medicine professionals 2230 2 14
Physiotherapists 2264 2.1 12
Photographers 3431 2.1 22
Farming, forestry and fisheries advisers 2132 2.1 26.33
Religious professionals 2636 2.5 19
Telecommunications engineers 2153 2.5 26
Health professionals not elsewhere classified 2269 2.7 16.07
Industrial and production engineers 2141 2.9 27
University and higher education teachers 2310 3.2 15.4
Environmental protection professionals 2133 3.3 20.33
Handicraft workers not elsewhere classified 7319 3.5 10
Handicraft workers in wood, basketry and related materials 7317 3.5 10
Lawyers 2611 3.5 22
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TABLE A6.3: Robustness check 1 - Determinants of early retirement transitions excluding
self-employed workers

Model V.R1 Model X.R1 Model XV.R1
Predicted probability (y) 0.0546 0.0546 0.0546

Independent variables (x) dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat

Main regressors
Automation risk (%) 0.15 3.99 ***
Automation degree (%) 0.37 2.89 ***
A-terrains (ref. Hands terrain)

Collapsing automation 13.96 3.1 ***
Rising automation 16.52 4.95 ***
Automation terrain 13.63 4.25 ***

Controls
Femalea 44.82 15.85 *** 44.19 15.6 *** 46.15 16.18 ***
Age 35.32 70.32 *** 35.31 70.31 *** 35.32 70.28 ***
With partnera 9.66 3.42 *** 9.62 3.41 *** 9.65 3.42 ***
Health (ref. Excellent)

Very good 8.22 2.01 ** 8.27 2.03 ** 8.36 2.05 **
Good 19.28 4.87 *** 19.44 4.93 *** 19.20 4.86 ***
Fair 32.62 7.13 *** 33.23 7.28 *** 32.86 7.2 ***
Poor 57.56 7.35 *** 57.98 7.39 *** 58.04 7.38 ***

Ability to make ends meet (ref. With great difficulty)
With some difficulty 6.94 1.43 6.68 1.38 6.54 1.35
Fairly easily 0.40 0.08 -0.20 -0.04 0.19 0.04
Easily 3.44 0.67 2.28 0.44 2.92 0.57

Education
Tertiary educationa -26.99 -9.4 *** -29.89 -11.08 *** -26.86 -9.55 ***

Job characteristics
Job status (ref. Employee)

Civil servant 18.80 6.6 *** 18.13 6.4 *** 19.58 6.85 ***
Full time 26.66 7.89 *** 25.96 7.63 *** 25.69 7.52 ***

Sector (ref. Primary)
Manufacturing and Construction 7.78 1.47 7.41 1.4 8.24 1.57
Services -11.15 -2.22 ** -12.22 -2.43 ** -10.24 -2.04 **

Macroeconomic variables
GDP growth -0.34 -0.58 -0.35 -0.59 -0.37 -0.63
Harmonised unemployment rate 2.81 5.62 *** 2.81 5.62 *** 2.81 5.61 ***
Old age pensions pps per capita 0.02 1.97 ** 0.02 1.91 * 0.02 1.94 *
Country dummies (ref. Spain) Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes
Log likelihood -16,887.9 -16,891.6 -16,881.8
# obs. 105,739 105,739 105,739
Notes: * 0.1 >p ≥ 0.05; ** 0.05 >p ≥ 0.01; *** p< 0.01. a Dummy variable.

TABLE A6.4: Robustness check 2 - Determinants of early retirement transitions and inten-
tion to retire early

Model XVI Model XVII Model XVIII Model XIX

Dependent variable Early retirement
transition

Intention to retire
early

Intention to retire
early

Intention to retire
early

Predicted probability (y) 0.0219 0.4621 0.4621 0.4621

Independent variables (x) dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
Intention to retire earlya 42.75 8.43 ***
Automation risk (%) 0.10 3.51 ***
Automation degree (%) 0.26 2.51 **
A-terrains (ref. Hands terrain)

Collapsing automation 7.04 2.03 **
Rising automation 7.80 2.83 ***
Automation terrain 10.53 3.97 ***

Controls
Femalea 30.90 5.5 *** -0.37 -0.17 -0.69 -0.32 -0.10 -0.04
Age 44.39 37.76 *** -1.39 -5.58 *** -1.40 -5.6 *** -1.39 -5.57 ***
With partnera -0.30 -0.05 7.39 3.11 *** 7.27 3.06 *** 7.28 3.06 ***
Health (ref. Excellent)

Very good 12.60 1.65 * 13.98 4.38 *** 14.04 4.4 *** 14.03 4.4 ***
Good 21.20 2.89 *** 26.69 8.51 *** 26.94 8.58 *** 26.78 8.54 ***
Fair 30.92 3.5 *** 45.75 12.37 *** 46.21 12.49 *** 46.05 12.46 ***
Poor 67.86 4.02 *** 66.39 10.4 *** 66.58 10.43 *** 66.65 10.47 ***

Ability to make ends meet (ref. With great difficulty)
With some difficulty 5.29 0.51 0.15 0.04 0.09 0.02 -0.17 -0.04
Fairly easily 7.86 0.76 -5.90 -1.44 -6.06 -1.48 -6.30 -1.54
Easily 7.35 0.7 -10.24 -2.4 ** -10.83 -2.54 ** -10.85 -2.55 **

Education
Tertiary educationa -38.40 -7.92 *** -11.82 -4.8 *** -13.92 -5.97 *** -12.36 -5.12 ***

Job characteristics
Job status (ref. Employee)

Civil servant 14.40 2.41 ** 4.38 1.85 * 4.07 1.71 * 4.83 2.03 **
Self-employed -31.91 -5.13 *** -14.91 -4.72 *** -15.50 -4.92 *** -15.31 -4.85 ***

Full timea 22.23 3.52 *** 6.61 2.18 ** 6.06 1.99 ** 5.82 1.91 *
Sector (ref. Primary)

Manufacturing and Construction 3.79 0.37 4.41 1.05 4.16 0.99 4.80 1.14
Services -14.80 -1.58 -5.65 -1.44 -6.26 -1.59 -5.08 -1.29

Macroeconomic variables
GDP growth -1.21 -0.89 0.27 1.97 ** 0.27 1.94 * 0.27 1.98 **
Harmonised unemployment rate 2.32 1.94 * 0.21 0.99 0.20 0.96 0.20 0.95
Old age pensions pps per capita 9.7E-2 4.09 *** 1.8E-3 0.36 0.00 0.33 0.00 0.36

Country dummies (ref. Spain) Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes
Log likelihood -5,666.2 -46,638.9 -46,660.0 -46,623.8
#obs. 75,078 75,078 75,078 75,078
Notes: * 0.1 >p ≥ 0.05; ** 0.05 > p ≥ 0.01; *** p< 0.01. a Dummy variable.
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TABLE A6.5: Robustness check 3 - Determinants of early retirement transitions – Years to
statutory retirement age

Model III Model IV Model V
Predicted probability (y) 0.0535 0.0535 0.0535

Independent variables (x) dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat

Main regressors
Years to statutory retirement age -35.43 -75.38 *** -35.43 -75.38 *** -35.42 -75.31 ***
Automation risk (%) 0.10 3.07 ***
Automation degree (%) 0.29 2.42 **
A-terrains (ref. Hands terrain)

Collapsing automation 12.84 3.15 ***
Rising automation 13.10 4.18 ***
Automation terrain 10.46 3.46 ***

Controls
Femalea -16.05 -6.3 *** -16.51 -6.46 *** -15.03 -5.87 ***
With partnera 11.84 4.45 *** 11.77 4.43 *** 11.77 4.42 ***
Health (ref. Excellent)

Very good 9.44 2.41 ** 9.36 2.39 ** 9.46 2.42 **
Good 19.10 5.08 *** 19.23 5.12 *** 18.94 5.04 ***
Fair 33.66 7.75 *** 34.07 7.85 *** 33.75 7.78 ***
Poor 69.40 9.44 *** 69.77 9.49 *** 69.73 9.45 ***

Ability to make ends meet (ref. With great difficulty)
With some difficulty 10.37 2.35 ** 10.22 2.31 ** 10.09 2.28 **
Fairly easily 4.77 1.08 4.44 1 4.69 1.06
Easily 6.80 1.45 6.02 1.28 6.49 1.38

Education
Tertiary educationa -27.76 -10.42 *** -29.75 -11.78 *** -27.46 -10.47 ***

Job characteristics
Job status (ref. Employee)

Civil servant 19.55 6.79 *** 19.08 6.66 *** 20.38 7.05 ***
Self-employed -31.43 -10.13 *** -32.05 -10.38 *** -32.24 -10.48 ***

Full timea 18.60 5.57 *** 18.05 5.38 *** 17.69 5.25 ***
Sector (ref. Primary)

Manufacturing and Construction 3.51 0.75 3.48 0.74 4.23 0.91
Services -12.24 -2.8 *** -12.75 -2.93 *** -11.35 -2.6 ***

Macroeconomic variables
GDP growth -0.99 -1.77 * -0.99 -1.77 * -1.01 -1.81 *
Harmonised unemployment rate 3.01 6.42 *** 3.01 6.41 *** 3.01 6.42 ***
Old age pensions pps per capita -3.14E-02 -3.08 *** -0.03 -3.1 *** -0.03 -3.08 ***
Country dummies (ref. Spain) Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes
Log likelihood -18,717.0 -18,718.6 -18,711.6
#obs. 118,467 118,467 118,467

Notes: * 0.1 > p ≥ 0.05; ** 0.05 > p ≥ 0.01; *** p ≤ 0.01. a Dummy variable.
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Chapter 7

The impact of Artificial Intelligence in the
Early Retirement decision

7.1 Introduction

The potential effect on the employment of the technologies that make up the so-called Fourth Indus-
trial Revolution is one of the main topics in actual economic research. 1 In general, the destructive and
displacing effect of these technologies has been the most covered and widespread in the literature (Au-
tor, 2015; Frey and Osborne, 2017; Acemoglu and Restrepo, 2020a). Nevertheless, other authors have
highlighted the potential of the current technological change for increasing productivity (Graetz and
Michaels, 2018) and create employment (Damioli et al., 2023). In addition, other authors have denied
the alarmist Luddite vision of massive job destruction due to automation (Arntz et al., 2016, 2017; Dauth
et al., 2017).

The current and potential impact of AI on the labour markets constitutes one of the main aspects of
this industrial revolution, since experts estimate that there is a 50% chance of AI outperforming human
in all tasks in 120 years (Grace et al., 2018). These estimates raise a debate about whether human work
will be replaced by this new technology or, on the contrary, will be complemented by it, raising its
productivity in an extraordinary way. In this respect, some authors have already classified the AI as a
transformative technology rather than a destructive one due to its complementarity degree with human
labour (Fossen and Sorgner, 2019, 2021). Therefore, we would talk about AI complementing Human
Intelligence (HI) 2 in a way that human labour productivity can take advantage of both. This fact
creates itself a paradigm for human capital, which can now be enhanced by a kind of artificial capital.

Additionally, the ageing of the population is another of the main economic concerns in industrialized
countries. In fact, governments not only take measures to mitigate ER but also to delay the statutory
retirement ages (European Commission, 2021). The paradigm of an ageing population accompanied by
a reduction in the working-age population, presents an important demographic change with numer-
ous consequences in various social, political and economic fields. For instance, the specific political
behaviour of the elderly in an ageing population may imply a reduction in education spending and an
increase in healthcare spending (Vlandas et al., 2021).

Given these very concrete technological and demographic circumstances in advanced economies, we
are in an unique moment in economic history where multiple crucial processes collapse. This encounter
of demographic and technological change with the ageing of the population and the rising of new dis-
ruptive technologies is originating several economic and political debates. Regarding the economic
debate on technological change, Jimeno (2019) remarks that there is uncertainty about the degree to
which new machines and human labor will be complements or substitutes in the production of existing
tasks embedded in the production of goods and services. On the other hand, Acemoglu and Restrepo
(2017) highlight how the current technological change could be burying the negative economic effects

1See Raj and Seamans (2019) for a literature review.
2See Stadlmann and Zehetner (2021) for an example of comparison between HI and AI competences.
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of the ageing of the population assumed by economic literature 3, since the countries undergoing more
rapid demographic change are more likely to adopt robots (Acemoglu and Restrepo, 2022).

This chapter provides new insights to this collision of technological and demographic change by
analyzing the effect of AI on the ER decisions in Europe. Although ER decisions have been widely
studied, and the analysis of the AI characteristics is one of the main topics in recent literature, the nexus
between these two concepts stills unexplored. In order to develop our analysis, we use microdata from
the Survey of Health, Ageing and Retirement in Europe (SHARE), a measure of AI advances (Felten et
al., 2018) and a measure of AI exposure (Felten et al., 2021). In addition, considering both AI advances
and AI exposure we proportionate a new technological classification of occupations in 4 Intelligence
terrains (I-terrains). For those occupations with a low level of advancement in this matter, we speak
of occupations of the HI terrain. For occupations with a high level of current AI advances but low
expectations of future development, we speak of the narrow AI terrain. For those occupations with low
current advances of AI but great development potential in the future, we speak of the future AI terrain.
Finally, for those occupations with a high level of advances and a high expectation of development in
the future, we are talking about the AI terrain.

We find that workers more affected by the AI revolution are less likely to transition to ER when
the impact of this new technology implies current advances and expectations of future developments.
When considering separately AI advances and AI exposure, we observe that AI-impact reducing the
ER probability either via current advances or future expectations requires tertiary education to be sig-
nificant. Indeed, we find a mediating effect of education between AI and ER. These results qualify the
conclusions on the influence of the Fourth Industrial Revolution on transitions to ER, pointing out that
this technological revolution is made up of a conglomerate of technologies with specific characteris-
tics that can affect various aspects of the labor market in different ways. In this sense, although it has
been documented that the automation process pushes old workers to ER (Yashiro et al., 2021; Casas and
Román, 2023), the AI revolution affects the ER decision in the opposite direction. To reach a conclusion
about the global effect that AI and the automation process can have on ER would require a broader
analysis.

Our results are consistent with recent evidence of robots having higher complementarity with older
workers (Battisti and Gravina, 2021). Furthermore, connecting our results with the theory of Ahituv and
Zeira (2011), we can indicate that, in the AI technical change, the wage effect -raised aggregate wages-
outweighs the erosion effect - the learning efforts dedicated to the new technologies pays off less gains
to older workers since they have shorter career horizons. Moreover, our results would fix into the con-
cept of "right" AI established by Acemoglu and Restrepo (2020b), with the consideration of a positive
economic outcome due to the implementation of AI for older workers in particular and the society from
a general perspective. In addition, our analysis can also be related with the literature studying the links
between ER and occupational characteristics. In this regard, our contribution would be on the focus of a
certain technological characterization of occupations. In this sense, it could be considered that this chap-
ter shares lineage with Hayward (1986), who examines the influence of occupational characteristics on
the ER of men, and Schreurs et al. (2011), who investigate workers’ ER intention among blueand white-
collar workers. Finally, in line with Agarwal and Gort (2002), the fact of AI reducing ER probabilities
for workers more affected by this transformative technology may rely on the expansion phase of this
technology- intensive industries and this desirable effect of AI in undermining ER transitions may have
a near obsolescence date. On the other hand, it can be argued that this desirable effect relies on the
transformative laborfriendly characteristics of this disruptive technology.

The rest of the chapter is structured as follows: section 2 presents the literature review and the main
hypotheses, section 3 presents the data used, as well as the methodology, the sample and the variables.
Section 4 presents the main results and section 5 summarizes the conclusions.

3The aging population have been assumed by some economists to have negative effects on economic growth, either because
of the lower labor force participation and productivity of older workers (Gordon, 2016) or because aging creates an excess of
savings over desired investment, leading to secular stagnation (Hansen, 1938).
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7.2 Background and hypotheses

Since this technological change encompasses a conglomerate of diverse technologies and processes, we
define a conceptual framework to delimitate the technological target of analysis of this study. Tak-
ing as a baseline the simplified vision of the technological change provided by Fossen and Sorgner
(2019), we can label the technological change as digitalization and identify both digitalization sides: a
destructive side and a transformative side. The destructive digitalization is equated by these authors
as computerization, a process that can be briefly defined as computer-based automation and mainly
involves robotization, which can be briefly defined as robot-based automation, and Machine Learning.
The International Federation of Robots (IFR) defines an industrial robot as an "automatically controlled,
reprogrammable, multipurpose manipulator, programmable in three or more axes, which can be either
fixed in place or mobile for use in industrial automation applications", while Brynjolfsson and Mitchell
(2017) define Machine Learning as a subfield of AI that studies the question "How can we build com-
puter programs that automatically improve their performance at some task through experience?".

The concept of destructive digitalization emerge as the logical continuation of the process of task
automation started with the introduction of the first machines (Hitomi 1994) and its impact on ER has
been addressed in Casas and Román (2023). Therefore, the current document focuses on the study of the
implications of transformative digitalization for the ER decision. According to Broussard (2018), there
are definitions for both "narrow AI" and "general AI". Concretely, the ’narrow’ definition of AI refers
to computer software that involves highly sophisticated algorithmic techniques to find patterns in data
and make predictions about the future, while the ’general’ definition of AI refers to computer software
that can think and act on its own, which does not yet exist. This chapter address the impact of both AI
definitions by considering current advances and future expectations regarding this technology.

This so-called transformative digitalization is going to impact occupations that were previously con-
sidered safe in past technological revolutions. In fact, it will affect all occupations to a greater or lesser
extent (Acemoglu and Restrepo 2018a; Grace et al. 2018) in a way that some jobs that were not known
to be affected by previous waves of automation may now be subject to higher AI exposure (Tolan et
al., 2021). Indeed, highskill occupations are most exposed to AI and this fact of AI-exposed jobs being
predominantly those involving high levels of education and accumulated experience, yields that older
workers who are most exposed to AI (Webb, 2020).

The AI revolution promises to bring multi-level changes to the economy. For instance, Adner et
al. (2019) foresee qualitative -and not only quantitative- changes due to three fundamental processes
underlying the actual digital transformation-representation, connectivity, and aggregation-, indicating
that these processes will continue to push firms in all industries to create and capture value differently,
develop new business models and ecosystems, manage new forms of intellectual property, grow scale
and scope differently, and create new opportunities and challenges for organization design and man-
agement practices. Moreover, the accelerated spread of this technology have been documented from
different perspectives. For instance, Acemoglu et al. (2022) document rapid growth in AI related va-
cancies over 2010-2018, finding that AI-exposed establishments are reducing hiring in non-AI positions
even as they expand AI hiring, without finding discernible impact of AI exposure on employment or
wages at the occupation or industry level. Related to this rapid spread of AI technologies, Martínez-
Plumed et al. (2021) remark the importance to consider the notion of technology "hyper adoption"
when analysing the process of AI progress, since this theory states that people adapt to and adopt new
technologies much faster than they used to do in the past.

Furthermore, since it has been found that robots have different substitutabilitycomplementarity re-
lation with workers depending on their ages (Battisti and Gravini, 2021), it results logical to expect that
AI would also have this different substitutabilitycomplementarity relation with workers depending on
their ages. Certainly, literature has stressed out the fact that older workers tend to have more work
experience and are therefore, at a similar education level, are more qualified, so the tasks performed by
older workers might be more complex than those of younger workers (Bordot, 2022).
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According to Felten et al. (2023), AI advances language modelling capabilities can have significant
impacts on certain occupations and industries. The authors present a methodology to assess this expo-
sure and find that top exposed occupations include telemarketers and post-secondary teachers, while
legal services and securities, commodities, and investments are the top exposed industries. This research
highlights the potential economic impacts of AI language modelling and the need for policymakers and
stakeholders to consider the implications for affected workers and sectors.

Related to AI language modelling, Floridi and Chiriatti (2020) highlights that readers and consumers
of texts will have to get used to not knowing whether the source is artificial or human, "just as today we
could not care less about knowing who mowed the lawn or cleaned the dishes". Eloundou et al. (2023)
examine the potential impact of Generative Pre-trained Transformer (GPT) models on the U.S. labour
market. Their research shows that approximately 80% of the U.S. workforce could have at least 10% of
their work tasks affected by the introduction of GPTs, while 19% of workers may see at least 50% of their
tasks impacted. This influence spans all wage levels, with higher-income jobs potentially facing greater
exposure, indicating that GPTs could have notable economic, social, and policy implications.

Petterson (2019) highlights the extensive promotion of artificial intelligence (AI) as a tool to improve
organizational performance and productivity since the 1960s. Today, AI is once again the centre of
attention due to its potential role in big business, akin to the rise of big data in the 1990s. However,
the author argues that discussions around the potential threat of AI to jobs often overlooks the complex
nature of knowledge work, which involves highly complex problem-solving that requires contextual,
social, and relational understanding. These elements have no universal rules or solutions, making it
challenging to program them into computer systems or replace them with AI. The article draws upon
philosopher Herbert Dreyfus’ thesis on AI to emphasize the limitations of current AI systems in fully
replacing human knowledge work.

Literature has raised a debate about whether AI complements or replaces labour (Tschang and Almi-
rall, 2021). Many studies indicate multiple instances of high complementarity between human labor and
AI. Regarding productivity, Yang (2022) estimates the impact of AI technology on the productivity and
employee profiles of firms in Taiwan’s electronics industry from 2002-2018, using a keyword-matching
method to parse the text of Taiwan patent grants. The study finds that AI technology is positively as-
sociated with productivity and employment, and that it crucially alters firms’ workforce compositions.
Regarding employment, Damioli et al. (2023) investigate the job-creation impact of AI technologies on
the supply side, where AI development is viewed as product innovations in upstream sectors. The
study analyzes a longitudinal sample of over 3,500 frontrunner companies that patented AI-related in-
ventions worldwide between 2000 and 2016, using system GMM estimates of dynamic panel models.
The results indicate a positive and significant impact of AI patent families on employment, suggesting
that AI product innovation has a labor-friendly nature.

Also studying the implications of AI for employment, Alekseeva et al. (2021) estimate the demand
for AI specialists across occupations, sectors, and firms using data on skill requirements in online job
postings. They find a significant increase in demand for AI skills across most industries and occupations
in the U.S. economy between 2010 and 2019, with the highest demand in IT occupations, followed by
architecture and engineering, scientific, and management occupations. The study also shows that firms
with larger market capitalization, higher cash holdings, and higher investments in R&D have a higher
demand for AI skills, and that job postings requiring AI skills within the same firm or job title have a
wage premium of 11% and 5%, respectively. Managerial occupations have the highest wage premium
for AI skills, and firms that demand AI skills more intensively also offer higher salaries in non-AI jobs.

All the aforementioned studies highlighting the labour-friendly characteristics of AI lead us to elab-
orate the first hypothesis of this study considering that AI may reduce the ER likelihood, more so if we
consider that AI may relief the workload in many occupations and the replacement of physically de-
manding tasks with the use of home-based IT technologies allow the older worker to remain employed
(Dropkin et al., 2016).

H1. Workers facing a higher impact of AI in their current occupation are less likely to retire early.
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Capital-skill complementarity theory argues that unskilled workers are displaced by the combina-
tion formed by equipment capital and skilled workers (Griliches, 1969; Krussel et al., 2000). Taking into
account the consideration of ageing in the framework of the capital-skill complementarity assumption,
Sachs and Kotlikoff (2012) present a simple framework in which smart machines substitute directly for
young unskilled labour, whereas they are complementary to older skilled workers. This phenomenon of
older skilled workers complementing new capital devices has been also studied at the microeconomic
level finding that older employees who use a PC at work having a higher probability of remaining em-
ployed in the future (Biagi et al., 2013), so computer users retire later than non-users (Friedberg, 2003)
and educational level is positively correlated with computer use (Schleife, 2006).

In this line, Venti and Wise (2015) highlight the importance of education in shaping economic out-
comes and the need to consider multiple pathways through which education influences retirement de-
cisions by examining the relationship between education and ER using Social Security Disability Insur-
ance (DI) and early claiming of Social Security retirement benefits data. They find that individuals with
less than a high school degree are more likely to participate in DI and claim Social Security benefits early
than those with a college degree or more.

Related to this fact, we can consider that workers with higher education are usually the workers
performing the high paying jobs so we could also observe this phenomenon by targeting the financial
situation instead of the education level. Radl (2012) discusses the impact of ageism in the workplace
and how it can prevent the prolongation of working lives, suggesting that social class has a significant
impact on retirement age norms, with those in higher social classes having later retirement age norms.
Then, this fact of workers in higher social classes (generally, educated workers) having later retirement
age norms goes hand-by-hand with the fact of technological progress raising the demand for educated
workers (Autor et al. 1998).

The aforementioned literature relating education, skills and technological progress lead us to the
proposition of the second hypothesis of this study stating that education plays a relevant role mediating
in the relationship between AI and the ER probability. This hypothesis is consistent with the skill-
biased technical change theory: unskilled workers are negatively impacted by technological progress
while skilled workers benefit from it.

H2. Education plays a mediating role in the relationship between AI and the likelihood of ER.

7.3 Data

We construct our dataset upon three data levels. First, we use microdata as a baseline. Second, we merge
occupation-level data collecting AI advances and AI exposure (Felten et al., 2018, 2021). Finally, we
merge country-level data about GDP growth (World Bank), harmonized unemployment rate (Eurostat)
and old-aged pensions in PPS per inhabitant (Eurostat).

Regarding the microeconomic baseline data, we use the SHARE,4 a research infrastructure devel-
oped from 2004 until nowadays. This database, the largest panEuropean social science panel study
providing internationally comparable longitudinal micro data which allow insights in the fields of pub-
lic health and socio-economic living conditions of European individuals, accounts for 480,000 in-depth
interviews with 140,000 people aged 50 or older from 28 European countries and Israel. From its be-
ginnings, SHARE has released 8 waves. This survey constitutes a baseline database to study retirement
(and particularly ER) from economical and sociological aspects among others.

Our sample covers 118,979 observations (from 17,573 individuals) from 50 to 66 years in the period
2004-2016. The geographical coverage is formed by 24 European countries: Austria, Germany, Sweden,

4The SHARE has become a standard database to analyze concrete aspect of retirement in recent years. Concretely, as a few
examples of the use of this database to study ER we can mention Siegrist et al. (2007), who study the link between psychosocial
quality and ER; Hochman and Lewin-Epstein (2013), who analyze the role of grandparenthood in the ER decision; or Markova
and Tosheva (2020), who focus on the exploration of determinants for the phenomenon in Bulgaria.

Universidad Internacional de Andalucía, 2023



152 Chapter 7. The impact of Artificial Intelligence in the Early Retirement decision

Spain, Italy, France, Denmark, Greece, Switzerland, Belgium, Czech Republic, Poland, Hungary, Portu-
gal, Slovenia, Estonia, Croatia, Lithuania, Bulgaria, Cyprus, Finland, Latvia, Romania and Slovakia.

This sample is constructed taking as a baseline the Job Episodes Panel. 5 Then, we merge extra
variables from waves 1, 2, 4, 5, 6 and 7. These added variables include information on physical health,
financial status, and education. Finally, we add external information sources: the main explanatory
variable at occupation level containing AI exposure and macroeconomic controls at country level (GDP,
unemployment rate and old-aged pensions in PPS per inhabitant).

7.3.1 Modelling approach

Our dependent variable (early retirement) takes value 1 when a worker decides to retire before his
statutory retirement age and 0 when the individual remains working. Thus, given the binary nature of
our dependent variable, we estimate the probability of early retirement using logit models and report
average marginal effects.

As the main explanatory variables we consider two occupation-level variables measuring current
advances and future expectations of AI impacts (AI advances and AI exposure) and a variable collecting
4 technological terrains regarding the AI current advances and future expected impacts at occupation
level. Both main explanatory variables rely on the occupation-level measures provided by Felten et al.
(2018, 2021)6 that are explained below as well as the process of construction of the I-terrains variable.

AI advances (Felten et al., 2018)

This variable collects the AI advances from 2010 to 2015 so it provides a measure for current degree
of development of AI for each occupation. This measure fits with the ’narrow’ definition of AI, in which
AI refers to computer software that involves highly sophisticated algorithmic techniques to find patterns
in data and make predictions about the future (Broussard, 2018). This ’narrow’ definition of AI could be
equated to some extent with Machine Learning. 7

AI exposure (Felten et al., 2021)

For the development of this measure, the authors go in the opposite direction to that followed in the
elaboration of the previous measure, by applying in this occasion a forward-looking approach. Con-
cretely, they base this measure on the meaningful scientific progress in AI applications, covering the
fundamental applications in which, according to experts in the field, AI is likely to have implications
for the workforce. Then, this measure fits the ’general’ definition of AI, referring to computer software
that can think and act on its own, which does not yet exist.

As we can observe in Figure 7.1, the variable collecting AI advances presents a bell shape while the
variable collecting AI exposure present a flat shape slightly close to a U-shape. Table 7.1 collects a brief
description of the AI variables, while Table 7.2 collects the descriptive statistics of these AI variables.

5https://doi.org/10.6103/SHARE.jep.710. See Brugiavini et al. (2019) and Antonova et al. (2014) for methodological
details.

6The AI variables have been obtained through a crosswalk between the Standard Occupational Classification (SOC-2010)
and the International Standard Classification of Occupations (ISCO-2008) of the variables provided by Felten et al. (2018, 2021).

7See Brynjolfsson and Mitchell (2017) and Brynjolfsson et al. (2018) for a discussion.
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TABLE 7.1: Description of the AI variables

Variable Description
AI advances AI progress in the occupation from 2010 to 2015.

(Felten et al., 2018) Backward-looking vision of AI exposure
AI exposure Experts’ estimation of AI potential in the forthcoming years.

(Felten et al., 2021) Forward-looking vision of AI exposure.

TABLE 7.2: Descriptive statistics of the AI variables

AI advances
[Felten et al., 2018]

AI exposure
[Felten et al., 2021]

Mean 3.437 -0.005
Median 3.473 -0.019
Standard deviation 0.648 0.945
Minimum 1.417 -2.123
Maximum 5.294 1.446
Number of
observations

424 424

FIGURE 7.1: Histograms of the AI variables

I-terrains

A possibility to collect together both current advances and future developments in AI in one vari-
able is to perform a technological classification of occupations in Intelligence terrains that considers the
human-artificial intelligence dichotomy depending on the degree of AI advances in the occupation and
its exposure to future AI applications. From now on, we refer to this classification as the I-terrains,
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collected in Table 7.3. As we can see, this classification comprises 4 clearly differentiated occupational
terrains, so we consider a variable that takes values from 1 to 4 :

1. HI terrain: occupations with low effect of AI in actual advances and exposure to future develop-
ments.

2. Narrow AI definition: occupations with high AI advances but low exposure to future develop-
ments.

3. Future AI applications: occupations with low actual AI advances but high expectation of future
developments.

4. AI terrain: occupations with both high advances of AI and exposure to new functionalities.

Our technological classification is inspired by the classification presented by Fossen and Sorgner
(2019), which maps occupations considering the transformative and destructive sides of digitalization,
equating transformative digitalization to AI and destructive digitalization to computerization. Our clas-
sification focuses on the analysis of transformative digitalization from a temporal perspective, consid-
ering both the current level of AI advances and the expectation of future developments.

TABLE 7.3: The technological classification of I-terrains.

AI advances [Felten et al., 2018]
Low High

AI exposure
[Felten et al., 2021]

High
Future AI applications

(FA)
AI terrain

(AIT)

Low
HI terrain
(HIT)

Narrow AI definition
(ND)

We consider as control variables the main explicative variables covered by the ER literature. Starting
from age, we also consider gender, cohabiting situation, health status, financial situation, tertiary edu-
cation, job status, contract type, sector, GDP growth, harmonised unemployment rate, the generosity of
the social security system. Below, we provide information about the characteristics of each control vari-
able, as well as some references to previous studies in the literature where they have been considered
for the analysis of ERs:

Gender (see, for instance, Dahl, Nilsen, and Vaage, 2003): This is a binary variable taking value of 0 if
the individual is male, 1 for females. - With partner (see, for instance, Kubicek, et al., 2010): Another
binary variables taking value of 1 if the individual is cohabiting, 0 otherwise.
Health (see, for instance, Holtzman et al., 1980; Bazzoli, 1985; Jones et al., 2010): Health status is mea-
sured in a range from 1 to 5 : 1 poor, 2 fair, 3 good, 4 very good and 5 excellent.
Financial situation (see, for instance, De Wind et al., 2014): The financial situation is collected as the
ability to make ends meet in a 1 to 4 scale: 1 with great difficulty, 2 with some difficulty, 3 fairly easily
and 4 easily.
Tertiary education (see, for instance, Allel, León, Staudinger, and Calvo, 2021): Binary variable taking
value of 1 if the individual accounts for higher education, 0 otherwise.
Job status (see, for instance, Quinn, 1977): The variable collecting the job status takes value of 1 for
employees, 2 for civil servants and 3 for self-employees.
Contract type (see, for instance, Livanos and Nunez, 2017): This variable takes value 1 if the job was
always full time, 0 otherwise.
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Sector (see, for instance, Kieran, 2001): We use the basic classification in three separated industries: 1
Primary, 2 Manufacturing and Construction and 3 Services.
GDP growth (see, for instance, Kim, 2009): real GDP growth rate from the World Bank.
Harmonised unemployment rate (see, for instance, Bould, 1980; Laczko et al., 1988): in PPS per inhabi-
tant from Eurostat.
The generosity of the social security system (see, for instance, Blöndal and Scarpetta, 1997; Blundell,
Meghir, and Smith, 2002): in PPS per inhabitant from Eurostat.

7.4 Results

This section presents the main results obtained in this study. The results are presented in a three-part
structure. In the first place,. Descriptive statistics are introduced along with a mapping of ER transitions
considering the I-terrains. Second, the impact of AI advances and AI exposure in the ER probability is
analysed providing a special focus to education under the consideration of a mediating role. Finally, the
AI advances-exposure interaction is explored considering the I-terrains and providing again insights
regarding education.

7.4.1 Descriptive statistics and the mapping of ER transitions in I-terrains

The descriptive statistics are presented in Table ??, showing the differences between the total sample,
the observations that concern the transitions to ER and the observations in which the transition does
not occur. As we can observe, the mean of the AI exposure variables for the total sample is 0.26 , while
the mean of this variable is -0.04 for observations collecting a switch to ER and 0.27 for the rest of ob-
servations. Thus, a first descriptive evidence clearly indicates that the AI exposure on the occupations
of early retirees are less prominent than these effects on the occupations of individuals who do not end
their working life early. This same effect can be observed for the binary variable, collecting whether the
AI effect on the occupation performed is high or low. The mean of this variable is 0.510 for observa-
tions that do not transition to ER, while it is 0.461 for observations that transition to ER. Therefore, the
proportion of 1 s that this variable takes with respect to 0 (high AI effect versus low effect) is higher for
observations in which the ER decision is not involved. Regarding the I-terrains, we can observe that the
share of observations in the AI terrain switching to ER is lower compared with the share of observations
in the AI terrain in the total sample and non-switching to ER. Complementary to this fact, the share of
observations switching to ER in the HI terrain and the Narrow AI definition are higher.

In the statistics of the rest of the variables, we can observe the effects widely collected by the ER lit-
erature. For instance, in the observations regarding the transition to ER, we observe a higher proportion
of individuals with simply fair or poor health, a higher proportion of civil servants, a lower proportion
of self-employed workers, a higher percentage of individuals from the primary and secondary sectors,
and lower GDP growth.

Figure 7.2 shows 6,358 transitions to ER from 393 different occupations. Each bubble represents an
occupation, with its size indicating the number of ERs from that occupation, and its centre located at the
point on the map determined by the occupation’s degree of AI advances and its score for AI exposure.
As we can observe, there are a large number of occupations both in the narrow AI terrain and in the
AI terrain more broadly. Specifically, of the 393 occupations with transitions to ER, we find 137 in the
narrow AI terrain and 159 in the AI terrain, indicating that 296 of the 393 occupations with transitions
to ER present a high degree of progress in AI, while the remaining 97 present a low degree of progress
in AI, with 60 of them belonging to the HI terrain. As expected, the terrain with the fewest number
of occupations is that of future AI applications, which includes those occupations that currently have a
low degree of progress in AI but have a high expectation of future AI development.

Table 7.4 complements the mapping of transitions to ER offered in Figure 7.2, by listing the 30 occu-
pations with the highest number of transitions to ER, ordered from highest to lowest according to the
ratio of ERs to total number of workers. As we can see in Table 7.4, among these 30 occupations with
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the highest number of transitions to ER, we find 6 occupations in the HI terrain, 10 occupations in the
narrow AI terrain, 5 in the terrain of future AI applications, and 9 in the AI terrain.

FIGURE 7.2: ER transitions and I-terrains.

Note: Compiled by authors from the SHARE data and considering the I-terrains classification.

7.4.2 ER, AI and education

Table 7.5 shows 5 logistic regression models with progress in AI as the main regressor. Each model
progressively adds more control variables, with the first estimation being the most parsimonious, con-
sidering only gender, age, cohabitation status, and country and year dummies. The second model adds
health and financial situation controls. The third model adds education, while the fourth model adds
labor variables (job status, type of contract, and industry), and the fifth model adds country-specific
macroeconomic controls (GDP growth rate, unemployment rate, old-aged pensions in PPS per inhabi-
tant). As we can see, the significance of progress in AI fades when we include the education control in
the estimations from model 3 onwards. This indicates the possible mediating effect of education on the
relationship between the probability of ER and the degree of progress in AI.

Similarly to Table 7.5 , Table 7.6 shows another 5 logistic regression models with increasing number
of controls, this time with AI exposure as the main explanatory variable. Although the effect of AI
exposure on the probability of ER is significantly negative in all estimations, we observe a decrease in
its significance once we introduce the education variable. Again, this suggests a possible mediating
effect of education on the relationship between the probability of ER and AI exposure. Consequently,
the mediating effect of education on the relationship between AI and the probability of ER would occur
both when considering current progress in AI and future development expectations.
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TABLE 7.4: ER transitions and occupation titles.

ISCO-08 Title ISCO-08
ER

transitions

Total
workers

Ratio:
#ER/total

workers

AI
exposure

AI
advances

I-
terrain

1 Toolmakers and related workers 7222 61 125 .488 -.583 3.525 ND
2 Bricklayers and related workers 7112 100 211 .474 -1.495 3.24 ND
3 Mail carriers and sorting clerks 4412 57 128 .445 -.909 2.736 HIT
4 Manufacturing labourers not elsewhere classified 9329 62 143 .434 -1.362 2.888 HIT

5 Agricultural and industrial machinery mechanics
and repairers 7233 77 181 .425 -1.047 4.026 ND

6 Motor vehicle mechanics and repairers 7231 67 162 .414 -.939 3.614 ND
7 Electrical mechanics and fitters 7412 54 137 .394 -.761 3.833 ND
8 Secondary education teachers 2330 115 297 .387 1.191 3.601 AIT
9 Heavy truck and lorry drivers 8332 94 252 .373 -.501 3.791 ND

10 Secretaries (general) 4120 99 267 .371 1.099 2.58 FA
11 Vocational education teachers 2320 56 151 .371 .352 3.528 AIT
12 Accounting and bookkeeping clerks 4311 61 168 .363 1.186 2.588 FA
13 General office clerks 4110 236 659 .358 1.238 2.58 FA
14 Shopkeepers 5221 92 260 .354 .575 3.352 AIT
15 Freight handlers 9333 68 193 .352 -.923 3.518 ND
16 Primary school teachers 2341 109 324 .336 1.087 3.6 AIT
17 Accounting associate professionals 3313 104 310 .335 1.04 2.848 FA

18 Cleaners and helpers in offices, hotels and other
establishments 9112 123 380 .324 -1.516 1.915 HIT

19 Car, taxi and van drivers 8322 66 209 316 -.633 3.461 ND
20 Managing directors and chief executives 1120 67 220 305 954 3797 AIT
21 Accountants 2411 58 192 302 1426 3295 AIT
22 Administrative and executive secretaries 3343 55 184 299 957 2.843 FA
23 Shop sales assistants 5223 159 547 291 -.016 3.071 ND
24 University and higher education teachers 2310 63 218 .289 1.24 3.401 AIT
25 Cooks 5120 78 274 .285 -603 2.965 HIT
26 Subsistence crop farmers 6310 61 214 .285 -1.601 2.747 HIT
27 Nursing professionals 2221 108 391 .276 .22 4.484 AIT
28 Domestic cleaners and helpers 9111 54 199 .271 -1.481 1.849 HIT
29 Health care assistants 5321 74 286 .259 -.701 3.045 ND
30 Child care workers 5311 67 278 .241 .024 3.355 AIT

In order to further explore the mediating effect of education on the relationship between AI and the
probability of ER, Figure 7.3 and Table 7.7 examine the interaction between education and AI variables.
By including the interaction between AI advances and education in Model V, and between AI exposure
and education in Model X, we observe that the negative effect of AI on the probability of ER is only
significant for individuals with higher education. In the case of AI advances, the effect is not significant
for individuals without higher education, and in the case of AI exposure, the effect is not significant for
individuals without higher education. This non-significant positive effect of the degree of AI advances
for individuals without higher education negates the negative significance of ER probability in Model
III.

7.4.3 ER, I-terrains and education

Once we have concluded that the effect of AI on the probability of ER is significantly negative for in-
dividuals with higher education from both a retrospective view of current advances and a prospective
view of potential impact, we move on to study the complete map by analysing the interaction between
the degree of AI advances and expectations of future development. In order to do this, we use the
technological classification in I-terrains. Given the relevant role that education has been shown to play,
we also independently analyse how the degree of AI advances and AI exposure interact for individuals
with and without higher education.
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TABLE 7.5: Determinants of the ER transitions with special focus on AI advances - Logit
estimations

Model I II III IV V
Predicted probability (y) 0.0534 0.0534 0.0534 0.0534 0.0534
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
AI advances -5.61 -2.92 *** -3.26 -1.69 * 2.36 1.19 -0.06 -0.03 -0.05 -0.03
Controls
Femalea 35.99 14.16 *** 36.71 14.42 *** 39.18 15.25 *** 45.56 16.39 *** 45.80 16.44 ***
Age 34.87 72.95 *** 34.73 72.63 *** 34.90 72.98 *** 35.19 73.67 *** 35.25 73.60 ***
With partnera 9.37 3.44 *** 9.98 3.66 *** 9.14 3.36 *** 10.36 3.83 *** 10.10 3.73 ***
Health (ref. Excellent)
Very good 7.53 1.96 ** 7.53 1.94 * 7.99 2.05 ** 8.04 2.07 **
Good 21.29 5.71 *** 19.18 5.09 *** 19.21 5.11 *** 19.34 5.15 ***
Fair 37.20 8.50 *** 33.63 7.65 *** 33.42 7.63 *** 33.41 7.64 ***
Poor 65.67 8.71 *** 60.38 8.11 *** 61.28 8.19 *** 61.73 8.25 ***
Ability to make ends meet
(ref. With great difficulty)
With some difficulty 8.48 1.82 * 8.99 1.97 ** 7.32 1.60 7.88 1.73 *
Fairly easily 0.18 0.04 2.96 0.65 1.96 0.43 2.55 0.56
Easily -0.69 -0.14 5.34 1.11 3.91 0.81 4.24 0.88
Education
Tertiary educationa -30.62 -11.83 *** -30.85 -11.82 *** -31.02 -11.89 ***
Job characteristics
Job status (ref. Employee)
Civil servant 17.43 6.02 *** 17.08 5.90 ***
Self-employed -32.50 -10.04 *** -32.52 -10.03 ***
Full timea 27.16 8.51 *** 27.14 8.49 ***
Sector (ref. Primary)
Manufacturing and Construction 3.32 0.68 3.15 0.65
Services -15.96 -3.56 *** -16.34 -3.63 ***
Macroeconomic variables
GDP growth -0.60 -1.06
Harmonised unemployment rate 2.50 5.38 ***
Old age pensions pps per capita 0.02 1.58
Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -19,026,1 -18,938.9 -18,873.3 -18,740 -18,721.3
#obs. 118,979 118,979 118,979 118,979 118,979
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

Table 7.8 presents five models with increasing order of control variables, analogously to Tables 7.5
and 7.6, with the difference that this time the I-terrains are presented as the main explanatory variable.
We observe that, taking the terrain of human intelligence as a reference, only workers in the AI terrain
have significantly lower probabilities of ER. This indicates that both a high degree of AI advances and
high AI exposure are needed for an occupation to experience a decrease in the probability of ER of its
workers. In fact, the degree of AI advances affects the probability of ER of each occupation differently
depending on the degree of AI exposure of that occupation. Similarly, the degree of AI exposure affects
the probability of ER differently depending on the degree of AI advances that each occupation has
experienced.

This interaction between the degree of AI advances and AI exposure can be seen in Figure 7.4. The
upper graph of Figure 7.4 considers the effect of AI exposure on the probability of ER depending on
the degree of AI advances, while the lower graph shows the effect of the degree of AI advances on the
probability of ER depending on AI exposure. These graphs have been obtained from an estimation with
all control variables considering the interaction between both variables.

As we can observe, AI exposure significantly increases the probability of ER when the degree of
AI advances is less than 2.4, while it significantly decreases the probability of ER when the degree of
advances is greater than 3.1. On the other hand, we observe that the degree of AI advances significantly
increases the probability of ER when the AI exposure variable takes a value less than -0.4 , while it
significantly decreases the probability of ER when the AI exposure variable takes values above 0.5 .
Therefore, the effect of AI on ER depends on the degree of advances and exposure, requiring a high
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TABLE 7.6: Determinants of the ER transitions with special focus on AI exposure - Logit
estimations

Model VI VII VIII IX X
Predicted probability (y) 0.0534 0.0534 0.0534 0.0534 0.0534
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
AI exposure -9.89 -8.06 *** -7.56 -6.03 *** -2.69 -2.02 ** -2.51 -1.84 * -2.62 -1.92 *
Controls
Femalea 41.05 16.31 *** 40.26 15.99 *** 39.13 15.57 *** 46.19 16.85 *** 46.46 16.91 ***
Age 34.96 73.17 *** 34.80 72.79 *** 34.91 72.97 *** 35.20 73.66 *** 35.26 73.59 ***
With partnera 9.66 3.55 *** 9.96 3.65 *** 9.24 3.39 *** 10.45 3.87 *** 10.20 3.77 ***
Health (ref. Excellent)
Very good 7.55 1.95 * 7.48 1.92 * 7.96 2.04 ** 8.01 2.06 **
Good 20.17 5.37 *** 18.83 4.99 *** 18.95 5.03 *** 19.07 5.07 ***
Fair 35.25 8.03 *** 32.95 7.49 *** 32.94 7.52 *** 32.91 7.52 ***
Poor 63.48 8.46 *** 59.80 8.04 *** 60.84 8.14 *** 61.27 8.19 ***
Ability to make ends meet
(ref. With great difficulty)
With some difficulty 9.58 2.08 ** 9.55 2.11 ** 7.61 1.67 * 8.19 1.80 *
Fairly easily 2.59 0.56 3.98 0.88 2.58 0.56 3.20 0.70
Easily 2.94 0.61 6.87 1.43 4.80 0.99 5.18 1.08
Education
Tertiary educationa -27.96 -10.35 *** -29.26 -10.83 *** -29.35 -10.87 ***
Job characteristics
Job status (ref. Employee)
Civil servant 17.57 6.11 *** 17.23 5.99 ***
Self-employed -32.53 -10.10 *** -32.55 -10.09 ***
Full timea 27.53 8.64 *** 27.53 8.62 ***
Sector (ref. Primary)
Manufacturing and Construction 3.84 0.80 3.71 0.77
Services -14.50 -3.21 *** -14.80 -3.26 ***
Macroeconomic variables
GDP growth -0.60 -1.05
Harmonised unemployment rate 2.52 5.41 ***
Old age pensions pps per capita 0.02 1.58
Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -18,996.9 -18,921.7 -18,871.9 -18,738.3 -18,719.5
#obs. 118,979 118,979 118,979 118,979 118,979
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

TABLE 7.7: Predicted ER probability, AI and education

Education

Marginal effect
of AI

No HE HE
dy/dx Z-stat dy/dx Z-stat

AI advances a 0.0017 1.29 -0.004 −2.25 ∗ ∗
AI exposure b -0.0006 -0.76 -0.005 −3.10 ∗ ∗∗

impact of both variables for a significant decrease to occur. Additionally, when one variable takes a
value below a certain threshold, the other variable has a significant positive effect on the probability of
ER.

This interaction reveals a dual effect of AI on the probability of ER when analysed from a com-
prehensive perspective considering both the degree of current advances and the expectation of future
developments in a given occupation. If the degree of advances has a low impact, AI exposure acts to in-
crease the probability of ER. Symmetrically, if AI exposure has a low impact, the degree of AI advances
also acts to increase the probability of ER. Similarly, if the degree of advances has a high impact, AI
exposure acts to decrease the probability of ER. Similarly, if AI exposure has a high impact, the degree
of AI advances also acts to decrease the probability of ER. Figure 7.5 shows the effect that the interac-
tion between the degree of advances and the degree of AI exposure has on the probability of ER. As we
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FIGURE 7.3: ER probability, AI and education

can see in the figure, each point in the interaction between the degree of advances and the degree of
AI exposure results in a specific probability of ER, thus creating a graph in the form of contour lines in
which the probability of ER varies depending on the area observed. As we can see in the graph labels,
this interaction between the degree of AI advances and exposure to the interstitial interest is nothing
more than our proposal of I-terrains. Therefore, we divide the graph into four sections determined by
the threshold values of both variables and name each region according to the corresponding I-terrain.

As we deduced in Figure 7.4, the probability of ER is affected by the interaction between both AI
variables at the extremes of the graph presented in Figure 7.5. Specifically, in the lower-left corner and
the upper-right corner, we observe lower probabilities of ER. That is, the lowest probabilities of ER occur
when both variables coincide at their extremes, that is, either the degree of AI advances and the position
are low, or both variables take high values. This decrease in the probability of ER is significantly greater
when both variables take high values, as can be seen in Table 7.8 , where we observe that the probability
of ER in the AI terrain is significantly lower than the probability of ER in the human intelligence terrain.

On the other hand, we find the highest probabilities of ER in the upper-left corner and the lower-right
corner of the graph, where high values of one variable interact with low values of the other. Specifically,
the highest probabilities of ER are found in the lower-right corner, indicating that these higher proba-
bilities of ER occur in the scenario in which an occupation is affected by a high degree of AI advances
while being associated with low AI exposure. This fact makes future expectations of development in AI
crucial when analysing the impact of the current degree of AI advances on a given occupation due to
being an emerging technology.

This interaction between the degree of AI advances and AI exposure varies depending on education,
as shown in Figure 7.6. For workers with higher education, the degree of AI advances has a significant
negative effect on the probability of ER for AI exposure values greater than 0.5 , while AI exposure has a
significant negative effect when the degree of AI advances is higher than 3. For workers without higher
education, the degree of AI advances has a significant positive effect on the probability of ER for AI
exposure values less than -0.4 and a significant negative effect for AI exposure values greater than 1.1.
On the other hand, AI exposure has a significant positive effect when the degree of AI advances takes
values less than 2.3, while having a significant negative effect when the degree of AI advances takes
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values greater than 3.2.
Continuing with the findings presented in Figure 7.6, we can see that the interaction between ad-

vancements and AI exposure has different effects on the likelihood of ER depending on whether in-
dividuals have a higher education degree or not. Figure 7.7 reproduces the graph presented in Figure
7.5, disaggregating individuals with and without higher education degrees. As we can observe, the top
graph shows how the interaction between the degree of advancement and AI exposure affects the like-
lihood of ER for individuals with a higher education degree, while the bottom graph shows the effect of
the same interaction on the likelihood of ER for individuals without a higher education degree. In both
graphs in Figure 7.7, we can see the same effects discussed in Figure 7.5. That is, the lower likelihoods
of ER are found in the corners where low and high values of both variables coincide, while the highest
values in the likelihood of ER occur in the corners where high and low values of both variables do not
coincide. Although this pattern is observed in both graphs, we can clearly see that it has a different
impact depending on whether individuals have a higher education degree or not.

Specifically, the likelihood of ER is lower for individuals with a higher education degree when low or
high values coincide for both the degree of advancement and exposure to artificial intelligence. On the
other hand, the likelihood of ER is higher for individuals without a higher education degree when low or
high values do not coincide for both the degree of advancement and exposure to artificial intelligence.
That is, for individuals with a higher education degree, the likelihood of ER is lower in the bottom-
left and top-right corners of the graph, while for individuals without a higher education degree, the
likelihoods of ER are higher in the top-left and bottom-right corners of the graph.

Before summarizing the main findings of this study, we briefly consider an analysis of the validity of
the hypotheses. Hypothesis H1 suggests that workers most impacted by AI are less likely to retire early.
We observe that this is true when the occupation has both high AI advances and AI exposure. However,
if either of these conditions is not met, hypothesis H1 may not hold true and the probability of early
retirement may increase depending on the combination of the impact of AI advances and exposure,
as well as worker characteristics. With respect to hypothesis H2, we can verify it based on the results
presented in Figures 7.3, 7.6 and 7.7, and Table 7.7.

FIGURE 7.4: Interaction between AI advances and AI exposure
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TABLE 7.8: Determinants of the ER transitions with special focus on the I-terrains - Logit
estimations

Model XI XII XIII XIV XV
Predicted probability (y) 0.0534 0.0534 0.0534 0.0534 0.0534
Independent variables (x) dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat dy
dx /y% z-stat dy

dx /y% z-stat
Main regressors
I-terrains (ref. HI terrain)
Narrow AI definition 0.14 0.04 0.96 0.26 1.37 0.39 -0.98 -0.27 -1.01 -0.28
Future AI applications -9.81 -2.28 ** -5.92 -1.37 -2.06 -0.49 -5.06 -1.2 -5.50 -1.31
AI terrain -25.18 -7.25 *** -20.39 -5.84 *** -10.03 -2.77 *** -12.35 -3.37 *** -12.45 -3.39 ***
Controls
Femalea 39.96 15.36 *** 39.51 15.19 *** 39.16 15.06 *** 46.05 16.38 *** 46.34 16.44 ***
Age 34.98 73.15 *** 34.83 72.82 *** 34.92 73.01 *** 35.21 73.67 *** 35.28 73.61 ***
With partnera 9.36 3.44 *** 9.57 3.51 *** 9.09 3.34 *** 10.37 3.84 *** 10.11 3.74 ***
Health (ref. Excellent)
Very good 7.84 2.02 ** 7.63 1.95 * 8.01 2.05 ** 8.06 2.06 **
Good 20.27 5.38 *** 18.86 4.98 *** 18.87 5.00 *** 18.99 5.03 ***
Fair 35.12 7.99 *** 32.86 7.47 *** 32.68 7.45 *** 32.65 7.46 ***
Poor 62.91 8.39 *** 59.56 8.01 *** 60.44 8.09 *** 60.87 8.14 ***
Ability to make ends meet
(ref. With great difficulty)
With some difficulty 9.43 2.05 ** 9.57 2.12 ** 7.72 1.70 * 8.30 1.83 *
Fairly easily 2.79 0.61 4.18 0.92 2.97 0.65 3.59 0.79
Easily 4.00 0.83 7.45 1.55 5.61 1.16 5.97 1.24
Education
Tertiary educationa -25.63 -9.25 *** -26.63 -9.57 *** -26.79 -9.63 ***
Job characteristics
Job status (ref. Employee)
Civil servant 18.33 6.33 *** 17.98 6.21 ***
Self-employed -32.24 -9.97 *** -32.28 -9.96 ***
Full timea 27.72 8.72 *** 27.71 8.69 ***
Sector (ref. Primary)
Manufacturing and Construction 4.54 0.95 4.39 0.91
Services -13.57 -3.02 *** -13.90 -3.08 ***
Macroeconomic variables
GDP growth -0.59 -1.05
Harmonised unemployment rate 2.51 5.40 ***
Old age pensions pps per capita 0.02 1.59
Country dummies (ref. Spain) Yes Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes Yes
Log likelihood -18,978.8 -18,906.1 -18,866.2 -18,731.5 -18,712.8
#obs. 118,979 118,979 118,979 118,979 118,979
Notes: * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01. a Dummy variable.

7.5 Conclusions

This chapter analyses the implications of the transformative digitalization in the ER decisions in Eu-
rope. To perform this analysis, using the SHARE as a base, we consider a variable collecting current AI
advances (Felten et al., 2018) as a backward-looking AI vision and a variable collecting the AI exposure
(Felten et al., 2021) as a forward-looking AI vision. In addition, we propose an occupational classifica-
tion in 4 intelligence domains that imply the suitability of occupations in the intelligence dichotomy of
human-artificial, collecting both the AI advances as a backward-looking AI vision and the AI exposure
as the forward-looking vision.

We find that occupations characterized by high levels of AI advances and high levels of AI exposure
are associated with a significant reduction in the probability of remaining in the workforce, both for indi-
viduals with higher education and those without. However, when these conditions are not present, the
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FIGURE 7.5: ER probability and I-terrains

FIGURE 7.6: Interaction between AI advances and AI exposure at different education levels

impact of AI on the probability of ER depends on whether or not the individual has a higher education
degree.
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FIGURE 7.7: ER probability, I-terrains and education

Specifically, when we examine the impact of AI on retirement probabilities taking into account a
continuous variable that measures the level of AI advances in each occupation, we observe that the cur-
rent level of AI advances has a significant impact in reducing the probability of ER only for individuals
with higher education degrees. In fact, for individuals without a higher education degree, the level of
AI advances leads to a nonsignificant increase in the probability of ER, which causes this variable to
have no significant effect when considering the entire sample. Similarly, when we examine the impact
of AI on retirement probabilities taking into account a continuous variable that measures AI exposure,
we observe that such AI exposure has a significant impact in reducing the probability of ER only for in-
dividuals with higher education degrees. In the case of individuals without a higher education degree,
the impact is in the same direction, reducing the probability of ER, but is not significant.

Moreover, the interaction between the level of AI advances and AI exposure is particularly relevant
since the impact of AI on the ER probability depends on both the current degree of advances and the
expectations of future development An increase in the level of AI advances may increase or decrease
the probability of ER, depending on the degree of AI exposure in the occupation. The same effect is
observed in the opposite direction, indicating that an increase in AI exposure may increase or decrease
the probability of ER, depending on the current level of AI advances.

The typological variable of I-terrains reveals that, in order to find a significant ER probability re-
duction from AI advances, a high AI exposure is needed. For a scenario in which there are high AI
advances in an occupation but low expectancy of further development, there are not sufficient incen-
tives to maintain a worker away from ER and the "wage effect" of the technological change (Ahituv
and Zeira, 2011) would not be enough to prevent the worker from taking the ER decision. On the other
hand, if we consider an occupation with low AI advances but high expectations of future developments,
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these incentives to keep the worker facing the development of this new technology are reduced since
this worker does not have experience in this regard and it would be more efficient for this performance
to be carried out by younger workers with a broader work horizon. Therefore, the incentives for work-
ers to keep working longer in order to take advantage of the transformative side of the technological
change are only significant in the scenario in which this worker is already experienced with AI (the
occupation considered has experienced high AI advances) and there is high expectation of further AI
implementations.

As AI continues to transform industries and workplaces, older workers may face unique challenges
and opportunities. On the one hand, older workers may have more difficulty adapting to new tech-
nologies and may be at risk of being left behind as the job market evolves. On the other hand, older
workers may have valuable skills and experience that can be leveraged in new ways with the help of
AI. For instance, AI can assist older workers with tasks that may be physically demanding or require
a high degree of precision. Additionally, older workers may have a wealth of institutional knowledge
and problem-solving skills that can be combined with AI to drive innovation and improve business
outcomes. However, it will be important for organizations to provide training and support for older
workers to ensure they are equipped with the skills needed to work effectively with AI.

Tertiary education can play a critical role in helping older workers acquire the knowledge and skills
they need to work effectively with AI and finding ways to add value in areas where AI cannot yet replace
human judgment and creativity. This may involve retraining programs, continuing education courses,
or even pursuing entirely new degree programs that are more relevant to the changing job market. At
the same time, there is a need for educational institutions to adapt their curricula and teaching methods
to better prepare students for the AI-driven future of work. This may involve incorporating AI-related
topics into existing courses or even developing entirely new courses that focus specifically on AI and its
applications in different industries.

Our research is not without limitations. One important limitation relies upon the assumption that
the crosswalk between SOC-10 and ISCO-08 is perfect and the job content of an occupation in the US is
the same as that of an occupation in any of the countries of our sample. This assumption has been made
previously to adapt similar technological measures with the same source (see, for instance, Casas and
Román, 2023; Crowley et al., 2021; Gardberg et al., 2020).

7.6 Appendix
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TABLE A7.1: Descriptive statistics

Total
sample

Switching
to ER (S)

Non switching
to ER (NS)

#obs. (#ind.) 118, 979(17, 573) 6, 358(6, 357) 112, 621(17, 002)

Variable Mean
(S.D. overall)

Mean
(S.D. overall)

Mean
(S.D. overall) Min Max Difference of

means NS-S
Main regressors

AI exposure 0.04
(0.96)

−0.03
(0.97)

0.04
(0.96) -2.123 1.446 0.08 ***

AI advances 3.32
(0.63)

3.31
(0.62)

3.33
(0.63) 1.509 5.294 0.02 **

I-terrains 2.7
(1.15)

2.6
(1.13)

2.71
(1.15) 1 4 0.11 ***

HI terrain 17.76 19.03 17.68 0 1 -1.34 ***
Narrow AI definition 31.46 34.74 31.27 0 1 -3.5 ***
Future AI applications 13.24 13.38 13.23 0 1 -0.15
AI terrain 37.54 32.84 37.81 0 1 4.97 ***
Controls
Female 0.514 0.483 0.516 0 1 0.03 ***

Age 55.4
(3.58)

59.2
(3.29)

55.2
(3.47) 50 66 -4.05 ***

With partner 0.799 0.807 0.799 0 1 -0.01

Health 2.8
(1.01)

3.0
(1.02)

2.8
(1.01) 1 5 -0.21 ***

Excellent 10.88 8.04 11.04 0 1 3 ***
Very good 23.78 19.28 24.04 0 1 4.75 ***
Good 40.39 40.83 40.36 0 1 -0.47
Fair 20.60 25.01 20.35 0 1 -4.66 ***
Poor 4.35 6.84 4.21 0 1 -2.63 ***
Ability to make ends meet 2.9 2.9 2.9 1 4 0.03 ***

(0.97) (0.97) (0.97)
With great difficulty 8.91 8.89 8.91 0 1 0.03
With some difficulty 26.89 28.61 26.79 0 1 -1.82 ***
Fairly easily 31.08 30.94 31.09 0 1 0.15
Easily 33.12 31.57 33.21 0 1 1.64 ***
Education
Higher education 0.301 0.233 0.305 0 1 0.07 ***
Job characteristics
Job status
Employee 52.51 50.39 52.63 0 1 2.23 ***
Civil servant 36.77 40.59 36.55 0 1 -4.04 ***
Self-employed worker 10.73 9.01 10.82 0 1 1.81 ***
Full time 0.87 0.90 0.87 0 1 -0.03 ***
Sector
Primary 8.12 9.30 8.05 0 1 1.24 ***
Manufacturing and Construction 24.17 28.48 23.92 0 1 -4.56 ***
Services 67.71 62.22 68.02 0 1 5.80 ***
Macroeconomic variables

GDP growth 1.96
(3.42)

1.70
(3.57)

1.97
(3.41) -14.8 11.9 0.27 ***

Harmonised unemployment rate 8.82
(4.38)

8.81
(4.63)

8.82
(4.36) 2.9 27.5 0.01

Old age pensions pps per capita 2041.4
(889.4)

2001.6
(851.1)

2043.7
(891.5) 504.7 3, 929.8 42.11 ***

Note: a Tests of equality of means between observations not switching to early retirement (NS) and observations switching
to early retirement (S); Ho: Mean (NS) – Mean (S) = 0; * 0,1 > p ≥ 0,05; ** 0,05 > p ≥ 0,01; *** p < 0,01.
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Chapter 8

The influence of new technologies in the
unemployment among older workers in
Europe

8.1 Introduction

The greatest technological revolution in history promises to bring about radical changes in the world
economy and in labour markets in particular. This important process of change remains covered in mys-
tery in several respects like the degree to which new machines and human labour will be complements
or substitutes in the production of existing tasks embedded in the production of goods and services
(Jimeno, 2019). What seems clear is that this technological change promises to have particular effects for
older workers (Battisti and Gravini, 2021).

In fact, the current technological revolution encompasses various technologies with different func-
tionalities and characteristics that could affect work in different ways. Perhaps, this is the reason why
numerous contradictory studies in this regard have arisen. On the one hand, some authors interpret the
new technologies as labour destroyers (i.e., Frey and Osborne, 2017), as well as wage constrainers (i.e.,
Acemoglu and Restrepo, 2020a). On the other hand, other authors remark the labour friendly side of
new technologies highlighting their capacity for labour productivity increase (i.e., Graetz and Michaels,
2018) and new jobs creation (i.e., Damioli et al., 2023). 1 Within this stream of thought, Brynjolfsson
and Mitchell (2017) remarked that, although a profound change is coming, human roles remain being
relevant for today’s world mainly because we are very far away from general AI and machines cannot
perform the full range of tasks that humans can do. 2 Furthermore, we can consider that the current
technological change should itself be useful to solve many of the workplace issues that it may originate.
3

Usually, literature generalizes the Fourth Industrial Revolution in the figure of a "robot" as a mix of
Artificial Intelligence (AI) and Robotics. This reasoning has been employed in a number of macroeco-
nomic studies to remark the drastic consequences for employment of these new "robots" (i.e., Berg et al.,
2018; Lin and Weise, 2019). This general vision from the macroeconomic perspective is clearly denoting
that a new technological wave will reduce labour time (by reducing the workday or jobs). However,
from the microeconomic perspective, we can find that distinct individuals can be differently affected
by new technologies in scales and measures, providing a large spectrum of affectation possibilities. In
consequence, we can state that, although the labour-saving impact caused by new technologies has been

1The implications of robots adoption to productivity growth have been questioned by Cette et al. (2021), who analyze
the contributions of robots to productivity growth in 30 OECD countries over 1975-2019 to conclude that robotization does
not appear to be the source of a significant revival in productivity. Concretely, they find that the contribution of robots to
productivity growth through capital deepening and TFP only appears to have been significant in Germany and Japan in the
sub-period 1975-1995 and in several Eastern European countries in 2005-2019.

2Pettersen (2019) discusses aspects of knowledge work that cannot be easily replaced by AI.
3For instance, as Mitchell and Brynjolfsson (2017) highlight, since technology will affect almost every occupation over the

next 10-20 years, online education could enrich options for the retraining of displaced workers.
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broadly studied from the macroeconomic point of view, literature lacks for microeconomic analysis fo-
cusing on specific technologies and workers.

This chapter emphasizes in this consideration of disaggregating the general vision of new techno-
logical impact on employment in order to identify different situations and elaborate proper policies
helping concrete individuals to embrace the technological change through a peaceful path. Concretely,
the effect of computerization, AI, ML and reorganization capacity on unemployment transitions among
older workers in Europe is analysed. To the best of our knowledge, the novelty presented by this study
is threefold: (i) analysing the impact of new technologies in the unemployment among older workers
in Europe, (ii) considering the impact of AI in unemployment, and (iii) measuring the concrete effect of
ML in unemployment.4

Following this introductory section, Section 2 will delve into the theoretical background that under-
pins our analysis, providing the necessary academic context and justifying our hypotheses. In Section
3, we describe the methods employed in the study, including details on the data, the sample, our es-
timation methods, and the measures. Our findings are then reported in Section 4, with a subsection
dedicated to the specific influence of new technologies on unemployment and job status among older
workers. This leads into Section 5, where we draw our conclusions from the study, providing a synthesis
of our analysis and its implications.

8.2 Theoretical background

Every technological change implies winners and losers in labour markets, embedding both a labour-
friendly and a labour-unfriendly side. While the appearance of new technologies displaces human
labour from some tasks for which machine use results more efficient, other tasks are created in which
humans have a competitive advantage respect to new equipment and there exists a positive capital-skill
complementarity.

These two sides of every technological change have been identified by the literature in the case
of digitalization. Defined as the transformation of business processes by leveraging digital technolo-
gies, digitalization is a conglomerate of old technological processes continuation and new technological
paradigms disruption.

On the one hand, as the continuation of old technological processes, digitalization supposed the re-
finement of automation. Defined as the use or introduction of automatic equipment in a manufacturing
or other process or facility, automation has been cohabiting with humans through all economic history.
Nowadays, the natural evolution of automation technologies is reflected in the term computerization,
defined as computerbased automation. This term, labelled by some authors as destructive digitaliza-
tion (Fossen and Sorgner, 2019), includes the consideration of ML technologies and robotics (Frey and
Osborne, 2017).

On the other hand, regarding the new technological paradigms, AI appears as a technology able
to impact occupations unaffected by previous technological waves (Tolan et al., 2021; Acemoglu and
Restrepo, 2018a). In fact, this new general purposed technology is likely to outperform humans in all
tasks in the following century (Grace et al., 2018). Therefore, a debate has arisen about whether AI will
complement or substitute human labour.

To date, a few studies have shown the AI potential for jobs creation, highlighting the labour-friendly
side of this technology (Damioli et al., 2023; Acemoglu et al., 2022; Alekseeva et al., 2021; Yang, 2022). In
line with these findings, some authors labelled AI as transformative digitalization. However, we must
bear in mind that AI is a nascent technology in the first stages of development for which we have only
observed its narrow dimension - computer software that relies on highly sophisticated algorithmic tech-
niques to find patterns in data and make predictions about the future -, while its general look computer
software that can think and act on its own - is yet a few years away to reality (Broussard, 2018).

4Although the term computerization includes robotics and ML, and the effect of computerization and robotics in unem-
ployment has been covered by the literature, the concrete impact of ML has not been previously measured.
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The specific analysis of AI impacts targeting older workers is particularly relevant if we consider
that older workers are most exposed to AI than their younger counterparts if we take into account
that high-skill occupations are most exposed to AI and these AI-exposed jobs predominantly involving
high levels of education and accumulated experience are more likely to be performed by older workers
(Webb, 2020). Although there is limited literature focusing specifically on the connection between AI
advances and older workers, some research papers have discussed the broader implications of AI and
automation on the workforce, which include potential impacts on older workers. For instance, Bessen
(2019) discusses the role of demand in determining the impact of AI on jobs, suggesting that older
workers in occupations with declining demand due to AI may face higher unemployment probabilities,
but also highlights the potential for AI-driven growth in other sectors to create new job opportunities.
As collected by Figure 8.1, the three technologies analysed in this study account not only for destructive
and transformative digitalization but also for the interaction between them. While computerization
has been equated to destructive digitalization, containing robotics and ML, AI has been equated to
transformative digitalization, being ML an AI subtechnology.

FIGURE 8.1: Venn diagram of computerization, ML and AI.

Older workers also experience the destructive and transformative effects of every technological
change, although usually the destructive side is more pronounce for them due to a competitive dis-
advantage managing new technologies, which implies the deterioration of job prospects generating that
this age group increasingly has more difficulties to adapt to technological progress (Schmidpeter and
Winter-Ebmer, 2021). Indeed, literature has describe the ageing of the population as an augmenting-
automation process, highlighting that ageing leads to greater industrial automation with a more in-
tensive use and development of robots (Acemoglu and Restrepo, 2022) and concluding that comput-
erization and population aging have large and statistically significant effects on employment growth
(Phiromswad et al., 2022). This fact of older workers experiencing a greater hardship due to automation
has been highlighted by economic literature since decades ago (see, for instance, Stern, 1955). The case
of digitalization is extensive to many older people that find it difficult to navigate the digital sphere and
to use online services, a phenomenon that has been labelled as "digital ageism" (Manor and Herscovici,
2021). In addition, while the labour-unfriendly side of every technological change is more pronounce
for older workers, the transformative side is more reduced. For instance, capitalized software invest-
ment raises worker earnings at a rate that declines after the age of 50 , to about zero beyond 65 (Barth
et al., 2022). In line with previous studies, we elaborate the Hypothesis H1 expecting to find that older
workers at high computerization risk are more likely to become unemployed. This hypothesis of older
workers at higher computerization risk experiencing higher unemployment probabilities can be sup-
ported by evidence from previous literature suggesting that older workers in occupations at high risk
of computerization may face increased unemployment due to factors such as job polarization, reduced
ability to adapt to new technologies, and lower engagement in training and skill development.
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Autor and Dorn (2013) investigate the impact of computerization on the US labour market, high-
lighting that technological advances tend to disproportionately affect workers in routine and low-skilled
jobs. Although their study does not specifically focus on older workers, they suggest that individuals in
occupations with higher computerization risk, including older workers, are more likely to face unem-
ployment due to job polarization.

Acemoglu and Restrepo (2020a) analyse the effect of industrial robots on local labour markets in
the US, finding that the introduction of robots reduces employment and wages in affected industries.
While the paper does not specifically concentrate on older workers, the results imply that workers in
occupations with higher computerization risk, including older workers, may face higher unemployment
probabilities.

Chui et al. (2016) discuss the potential for automation and computerization to displace human work-
ers across various industries. They suggest that older workers in occupations at high risk of comput-
erization may face higher unemployment probabilities due to their reduced ability to adapt to new
technologies and the likelihood of their skills becoming obsolete. Nedelkoska and Quintini (2018) ex-
amine the relationship between automation and skill use, as well as its implications for worker training.
The authors argue that workers at high risk of automation, which may include older workers, are less
likely to engage in training and skill development. This lack of training makes them more vulnerable to
unemployment.

Hypothesis H1: Older workers at higher computerization risk have higher unemployment probabilities.

The potential of AI for job creation has been documented by several studies (Acemoglu et al., 2022;
Tschang and Almirall, 2021; Damioli et al., 2023; Alekseeva et al., 2021; Yang, 2022), therefore we present
the Hypothesis H2 expecting to observe this transformative effect in the unemployment probabilities of
older workers. Then, we expect that older workers in occupations with higher scores in AI advances
are less likely to become unemployed. The hypothesis that older workers at occupations with higher
AI advances have lower unemployment probabilities may appear counterintuitive, so we provide some
concrete examples of potential scenarios where AI could support older workers and lead to lower un-
employment probabilities. Brynjolfsson and McAfee (2014) argue that AI advancements can lead to the
development of tools and systems that augment and support human labour rather than replace it. For
example, AI-powered decision support systems or intelligent automation tools can help workers be-
come more productive and efficient. In this context, older workers could benefit from the adoption of
AI technologies, which might help them remain competitive in the labour market.

AI advancements in healthcare can lead to better health outcomes and well-being for older workers,
as described by Topol (2019). Improved healthcare can enable older workers to maintain their health,
extend their working lives, and reduce the likelihood of early retirement due to health issues. Goldin
and Katz (2018) highlight that AI can play a significant role in personalized learning and skill devel-
opment, allowing older workers to upskill or reskill more effectively. This could help older workers
adapt to changing job requirements and reduce their unemployment probabilities. AI can also be used
in job matching and employment services to help older workers find suitable job opportunities more ef-
ficiently, as illustrated by Marinescu and Wolthoff (2020). This could lead to better job market outcomes
for older workers, thereby reducing their unemployment probabilities.

Hypothesis H2: Older workers at occupations with higher AI advances have lower unemployment probabilities.

ML is considered part of computerization and therefore a destructive digitalization technology.
Therefore, we can expect that workers operating in occupations with higher suitability degrees to this
technology are expectedly more likely to become unemployed, which lead us to the elaboration of our
Hypothesis H3. According to Brynjolfsson and McAfee (2017) ML and related technologies may influ-
ence employment prospects across different demographic groups. Chui et al. (2016) suggests that older
workers in routine and repetitive jobs, which are highly suitable for ML applications, may be more at
risk of unemployment due to job displacement. Indeed, the measure provided by Frey and Osborne
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(2017) takes into account advancements in ML and other digital technologies, then Hypothesis 1 and
Hypothesis 3 must point logically in the same direction.

There is limited literature explicitly connecting older workers and machine learning (ML) suitability.
The research on the impact of automation and digital technologies, which include ML as a key com-
ponent, has focused primarily on the broader workforce without specifically targeting older workers.
However, some studies explore the implications of automation and computerization on older work-
ers, providing insights into their vulnerability to job displacement and the need for skill development.
Arntz et al. (2016) suggesting that older workers are more likely to be affected by automation, including
ML-driven technologies, than younger and more-educated workers. Tolan and Stone (2019) discuss the
challenges that digital technologies, including ML, might bring to older workers, such as skill obsoles-
cence or the need for retraining.

Hypothesis H3: Older workers at occupations with higher ML suitability have higher unemployment probabili-
ties.

Autonomous equipment automate tasks, so the occupations highly composed by automatable tasks
are those likely to disappear in the forthcoming years. Therefore, we expect that occupations with higher
reorganization capacities are less likely to be taken over by new technologies. Accordingly, we state the
Hypothesis H4 expecting that older workers in occupations with higher reorganization capacity are less
likely to become unemployed since this reorganization capacity implies more possibilities to adapt the
job content to new technologies.

The hypothesis that older workers at occupations with higher reorganization capacity have lower
unemployment probabilities can be supported by the idea that occupations with greater adaptability
can better accommodate the needs and skills of older workers. Caroli and Van Reenen (2001) found
that organizations with greater reorganization capacity can better adapt to new technologies and mar-
ket conditions, potentially leading to lower unemployment probabilities for workers, including older
workers, as firms can reallocate tasks and retrain employees in response to changing circumstances.

Another study by Ilmakunnas and Ilmakunnas (2011) supports this hypothesis by examining the
impact of age diversity in the workplace on productivity and profitability. They suggest that firms with
higher reorganization capacity can better utilize the skills and experiences of a diverse workforce, in-
cluding older workers, which can lead to improved productivity and potentially lower unemployment
probabilities for these workers.

Cedefop (2018) further highlights the importance of reorganization capacity in addressing skill short-
ages and mismatches through findings from the European Skills and Jobs Survey. Occupations with
higher reorganization capacity may offer better opportunities for older workers to acquire new skills
and adapt to changing job requirements, reducing their unemployment probabilities. Moreover, a study
by van Ours and Stoeldraijer (2011) on the relationship between age, wage, and productivity in Dutch
manufacturing suggests that older workers can maintain their productivity levels in firms with higher
reorganization capacity. In such firms, older workers may face lower unemployment probabilities as
they can continue to contribute effectively to the organization. The aforementioned studies collectively
suggest that older workers in occupations with higher reorganization capacity may face lower unem-
ployment probabilities, as these occupations can better adapt to change and leverage the skills and
experiences of older workers.

Hypothesis H4: Older workers at occupations with higher reorganization capacity have lower unemployment
probabilities.

Employees, civil servants, and self-employed workers are differently exposed to the impacts of tech-
nology and face different labour market dynamics. Autor and Dorn (2013) find that the impact of new
technologies on unemployment transitions may differ across job statuses, as employees in routine-
intensive jobs might be more vulnerable to job displacement than civil servants and self-employed
workers, who often have more job security or flexibility.
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Bresnahan, Brynjolfsson, and Hitt (2002) indicate that the impact of new technologies on unem-
ployment transitions might differ across job statuses, as employees, civil servants, and self-employed
workers have varying degrees of exposure to technology-driven skill requirements and workplace reor-
ganization. Moreover, Hipp, Bernhardt, and Allmendinger (2015) suggest that the effects of technology
on unemployment transitions may differ for employees, civil servants, and self-employed workers due
to variations in labour market regulations and protections across these job statuses. In summary, the
studies collectively suggest that new technologies may affect the unemployment transitions of older
workers differently based on their job status, with varying challenges and opportunities in adapting
to technological changes leading to different unemployment probabilities and transitions. However,
other factors, such as education levels, industry dynamics, and government policies, may also influence
the relationship between new technologies and unemployment transitions for older workers across job
statuses.

The aforementioned studies lead us to the specifications of the Hypothesis H5 indicating that the
unemployment probabilities of older workers are differently impacted by new technologies depending
on their job status.

Hypothesis H5: New technologies affect the unemployment transitions of older workers differently depending on
the job status.

8.3 Methods

8.3.1 Data

We use the Survey of Health, Ageing and Retirement in Europe (SHARE), a research infrastructure
developed from 2004 to the present day. This database, the largest panEuropean social science panel
study providing internationally comparable longitudinal micro data which allow insights in the fields
of public health and socio-economic living conditions of European individuals, accounts for 480,000 in-
depth interviews with 140,000 people aged 50 or older from 28 European countries and Israel. From its
beginnings, SHARE has released 8 waves.

8.3.2 Sample

Our sample covers 145,612 observations (from 16,697 individuals) from 40 to 66 years in the period
2004-2016. The retrospective modules of the SHARE make it possible to have data on an individual be-
fore entering the Survey, that is why even if the SHARE surveys people aged 50 or older, we can easily
establish a sample that observes workers from the age of 40 harnessing the full potential of the data
for our analysis. The geographical coverage is formed by 24 European countries: Austria, Germany,
Sweden, Spain, Italy, France, Denmark, Greece, Switzerland, Belgium, Czech Republic, Poland, Hun-
gary, Portugal, Slovenia, Estonia, Croatia, Lithuania, Bulgaria, Cyprus, Finland, Latvia, Romania and
Slovakia.

This sample is constructed taking as a baseline the Job Episodes Panel. 5 Then, extra variables
from waves 1, 2, 4, 5, 6 and 7 are merged. These added variables include information on physical health,
financial status, and education. Finally, external information sources is added: the main explanatory
variables at operational level containing technological measures and macroeconomic controls at country
level (GDP and unemployment rate).

5https://doi.org/10.6103/SHARE.jep.710. See Brugiavini et al. (2019) and Antonova et al. (2014) for methodological
details.
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8.3.3 Estimation methods

Since transitions from employment to unemployment are analysed, logit models estimations are con-
sidered.

8.3.4 Measures

Dependent variable

Our main dependent variable is binary, taking value of 0 if the individual is working in periods t and
t + 1, and taking value of 1 if the individual is working in period t and unemployed in period t + 1.

Independent variables

Main explanatory variables

Four technological measures for digitalization are considered: computerization probability (Frey
and Osborne, 2017), advances in AI (Felten et al., 2018), suitability for ML (Brynjolfsson et al., 2018)
and reorganization capacity (Brynjolfsson et al., 2018). 6 These four main explanatory variables have
been obtained through a crosswalk between the Standard Occupational Classification (SOC-2010) and
the International Standard Classification of Occupations (ISCO-2008).

Table 8.1 collects the descriptions of the main explanatory variables, while Table 2 shows their de-
scriptive statistics and Figure 8.2 plots their histograms. Although these measures are calculated for
different numbers of occupations, we consider only the occupations for which we can account for all the
four digitalization measures so the effects of the different variables on labour is comparable. 7

TABLE 8.1: Description of the main explanatory variables

Variable Description Effect on
employment

Computerization
probability

[Frey and Osborne, 2017]

Probability that the occupation will be computerized
in the time lap between 2023 and 2033. Destructive

Advances in AI
[Felten et al., 2018] AI progress in the occupation from 2010 to 2015. Transformative

Suitability for ML
[Brynjolfsson et al., 2018]

Mean potential of tasks in the occupation to be took
over by ML Destructive

Reorganization capacity
[Brynjolfsson et al., 2018]

Potential for reorganization, redesign and
reengineering. Transformative

Note: the term Destructive implies substitution to human labour while the term Transformative implies
complementarity to human labour.

TABLE 8.2: Descriptive statistics of the main explanatory variables

6These measures have been previously used by Fossen and Sorgner (2021) to investigate the relationship of the new wave
of digitalization of occupations with entry into different types of entrepreneurship.

7In particular, according to the SOC-10, computerization probability is provided for 702 occupations, advances in AI for 772
occupations, and suitability for ML and reorganization capacity for 964 occupations. Since the ISCO-08 is less disaggregated
than SOC-10, after the crosswalk we account for 405 occupations with the 4 digitalization measures available.
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Computerization
probability

[Frey and Osborne, 2017]

Advances in AI
[Felten et al., 2018]

Suitability for ML
[Brynjolfsson et al., 2018]

Reorganization
capacity

[Brynjolfsson et al., 2018]
Mean 0.5 3.428 3.49 0.6
Median 0.532 3.466 3.486 0.599
S. D. 0.337 0.654 0.097 0.59
Minimum 0.0039 1.417 3.192 0.3949
Maximum 0.99 5.294 3.745 0.7996
# of observations 405 405 405 405

FIGURE 8.2: Histograms of the main explanatory variables

Control variables

As control variables we consider those widely covered and accepted by the literature about transi-
tions to unemployment. Regarding the demographic characteristics, we consider gender, age, cohabi-
tation status, health status in a range of 1 to 5 from excellent to poor health, and the financial situation
measured as the ability to make ends meet measured on a scale of 1 to 4 from "with great difficulty"
to "easily". Education is collected as a dummy variable that takes value 1 if the individual has higher
education and 0 otherwise. 8 Regarding job characteristics, we control for (i) the job status, taking value
1 if the worker is an employee, 2 if civil servant and 3 if self-employed; (ii) the type of contract, that is
collected in a dummy variable that takes value 1 if the job was always performed full time, 0 otherwise,

8We consider fundamental controlling higher education since Gardberg et al. (2020) find that the average automation
probability of low-skilled workers is almost twice as high as of university graduates. Furthermore, these authors show that
employment and wage shares of occupations with a higher automation risk have declined in Sweden over the period 1996-
2013.
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and, (iii) industry, considering the classic subdivision into primary, secondary (manufacturing and con-
struction) and tertiary (services) sectors. Finally, country dummies, as well as macroeconomic variables
(GDP growth and harmonized unemployment rates) are included. 9

8.4 Results

Our main results are included in Tables 3 and 4. Table 8.3 includes 4 models that have as their main
explanatory regressor one of the 4 technological variables considered. Specifically, Model I considers
the automation probability as the main explanatory variable, while in Model II the main variable is
AI advances, Model III encompasses ML suitability, and Model IV the reorganization capacity of the
occupation. On the one hand, our results show that a higher automation probability and a higher suit-
ability to ML lead to higher unemployment probabilities (verifying the Hypothesis H1 and H3 ), while
on the other hand, we find that workers in occupations with higher levels of AI advances, as well as
occupations with higher reorganization capacity, have lower unemployment probabilities (verifying the
Hypothesis H2 and H4). 10

As it can be observed in Table 8.3, workers in occupations with greater advances in AI have lower
probabilities of becoming unemployed 11 while workers in occupations more adaptable to ML have
greater probabilities of transitioning to unemployment. This is a striking fact as ML is a subfield of AI.
What this information tells us is that, if we consider the aggregate of all AI subfields, this technology
acts as a shield against unemployment. However, if the employment effect of ML -a specific subfield
of AI- is isolated, we observe that the advancement of this technology makes workers in occupations
adaptable to it increase their probability of being unemployed. This result may be an example of the
complexity of the technological change that we are facing, in which a technology and a subfield of it can
have completely opposite effects on specific aspects of the labour market.

Reinforcing recent evidence of occupation-level job tenure falling more in occupations at high risk of
automation with a particularly pronounced effect among older workers (Georgieff and Milanez, 2021),
we find that older workers at a higher computerization risk are more likely to become unemployed.
Technological progress has been linked to inactivity among older workers, emphasizing the challenges
faced by workers displaced by automation in finding alternative employment (Grigoli et al., 2022). Hey-
wood et al. (2011), using German establishment data, discovered that establishments with jobs requiring
computer use are less likely to hire older workers.

Hudomiet and Willis (2021) find evidence of computerization pushing numerous fulltime workers
into part-time jobs while lowering their wages. Their results indicate that many older workers retired
earlier than "normal" when computerization first permeated their occupations, suggesting that older
workers nearing the end of their working lives may be forced into early retirement if it is not optimal
for them to invest in human capital to compensate for their skills obsolescence.

9Table A1 collects the descriptive statistics of all measures included in our analysis. The mean age regarding observations
in which a switch to unemployment is lower than the mean age of the total sample, since as workers get older, they are more
propense to switch to inactivity instead of switching rather than to unemployment when they lose/leave their jobs. This also
explains the low number of transitions to unemployment in the sample. Table A1 also indicates that unemployment among
older workers is mainly a thing of poorer workers and the estimates in Table 8.3 corroborate that poorer workers have higher
significant probabilities of going unemployed.

10Felten et al., (2021) also propose a measure for the AI future development expectation at occupation level. We do not
find a significant association between this variable and the unemployment transitions of older workers in Europe, indicat-
ing that while AI advances play a significant role preventing unemployment of older workers, the expectations of further
implementations of this technology does not directly influence the transition.

11Hunt et al. (2022) analyze the impact of AI-enabled technologies in organizations by applying a methodology based on
the use of bespoke employer surveys to conclude that organizations introducing AI have higher rates of both job creation and
destruction compared to organizations introducing non-AI technology.
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TABLE 8.3: Determinants of the unemployment transitions

Model I II III IV
Predicted probability (y) 0.0026635 0.0026604 0.0026593 0.0026565
Independent variables (x) dy

dx /y z-stat dy
dx /y z-stat dy

dx /y z-stat dy
dx /y z-stat

Main regressors
Automation probability 0.82 4.36 ***
AI advances -42.16 -4.31 ***
ML suitability 205.37 3.66 ***
Reorganization capacity -200.69 -2.02 **
Controls
Female a -7.37 2.57 ** 20.59 1.68 * 26.75 2.24 ** 33.45 2.84 ***
Age -26.47 -5.64 *** -7.36 -5.65 *** -7.41 -5.68 *** -7.25 -5.56 ***
With partner a 0.00 -1.82 * -26.26 -1.81 * -28.04 -1.91 * -27.50 -1.88 *
Health (ref. Excellent)

Very good 37.86 0.42 9.17 0.52 8.30 0.48 9.01 0.52
Good 63.30 2.21 ** 39.02 2.32 ** 40.24 2.42 ** 39.17 2.33 **
Fair 37.69 3.16 *** 64.40 3.25 *** 67.96 3.43 *** 65.22 3.29 ***
Poor 0.00 1.42 39.45 1.49 43.86 1.63 40.64 1.53

Ability to make ends meet
(ref. With great difficulty)

With some difficulty -127.52 -3.09 *** -91.57 -3.07 *** -101.84 -3.22 *** -96.65 -3.14 ***
Fairly easily -159.40 -4.11 *** -122.40 -4.01 *** -137.52 -4.25 *** -130.03 -4.14 ***
Easily -163.74 -5.09 *** -153.96 -5 *** -170.30 -5.23 *** -162.57 -5.13 ***

Education
Tertiary education -1.43 -0.1 -4.48 -0.33 -20.15 -1.62 -14.94 -1.17
Job characteristics
Job status (ref. Employee)

Civil servant -45.23 -3.66 *** -47.50 -3.86 *** -51.53 -4.2 *** -50.54 -4.1 ***
Self-employed -68.11 -4.15 *** -70.52 -4.37 *** -76.07 -4.88 *** -75.05 -4.8 ***

Full time a 1.02 0.06 5.06 0.31 -1.37 -0.08 -0.24 -0.01
Sector (ref. Primary)

Manufacturing and
Construction 7.98 0.32 2.36 0.08 20.90 0.83 3.18 0.12

Services -13.38 -0.56 -30.82 -1.15 -12.30 -0.53 -22.48 -0.88
Macroeconomic variables

GDP growth -2.44 -1.09 -2.42 -1.08 -2.43 -1.09 -2.45 -1.1
Harmonised unemployment
rate 1.81 0.87 1.93 0.93 1.70 0.82 1.77 0.86

Country dummies (ref. Spain) Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes
Log likelihood −2, 459.8997 −2, 460.6522 −2, 463.7072 −2, 468.6703
#obs 145,612 145,612 145,612 145,612
Notes: * 0.1 > p ≥ 0.05; ** 0.05 > p ≥ 0.01; *** p < 0.01. a Dummy variable

The results indicating that AI advances may reduce older workers unemployment probabilities can
be related with the fact that the replacement of physically demanding tasks through the use of home-
based communication and information technologies could potentially enable older workers to remain
employed (Dropkin et al., 2016).

8.4.1 New technologies, unemployment and job status

In this section we consider the above models including the interaction between technological variables
and job status. In this way, we analyse how the new technologies that make up the current technological
wave affect in a differentiated way the probability of unemployment of employees, civil servants and
the self-employed. Both Figure 8.3 and Table 8.5 are derived from the models in Table 8.4. Specifically,
the up-left graph of Figure 8.3 and the rows on automation risk in Table 8.5 are obtained from Model V;
the up-right graph of Figure 8.3 and the rows on AI advances in Table 8.5 are obtained from Model VI;
the down-left graph of Figure 8.3 and the rows on ML suitability in Table 8.5 are obtained from Model
VII; and the down-right graph of Figure 8.3 and the rows on reorganization capacity in Table 8.5 are
obtained from Model VIII.

As we can observe in Figure 8.3 and Table 8.5, new technologies affect workers differently depending
on their job status, which verifies the Hypothesis H5. Specifically, the probability of unemployment of
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TABLE 8.4: Determinants of the unemployment transitions considering interaction be-
tween the technological measures and job status

Model V VI VII VIII
Predicted probability (y) 0.0026617 0.0026568 0.0026571 0.0026572
Independent variables (x) dy

dx /y z-stat dy
dx /y z-stat dy

dx /y z-stat dy
dx /y z-stat

Main regressors
Automation riska 38.37 3.29 ***
High AI advancesa -38.71 -3.01 ***
High ML suitabilitya 33.98 2.86 ***
High reorganization capacitya -19.43 -1.72 *
Controls
Femalea 30.40 2.57 ** 25.55 2.11 ** 28.37 2.37 ** 35.91 3.06 ***
Age -7.29 -5.59 *** -7.32 -5.62 *** -7.37 -5.65 *** -7.32 -5.61 ***
With partnera -26.19 -1.8 * -26.67 -1.83 * -28.05 -1.91 * -26.90 -1.85 *
Health (ref. Excellent)

Very good 7.94 0.45 8.47 0.49 8.84 0.51 8.87 0.51
Good 38.45 2.27 ** 39.12 2.32 ** 40.18 2.41 ** 38.84 2.31 **
Fair 64.54 3.23 *** 65.12 3.28 *** 67.19 3.39 *** 65.25 3.28 ***
Poor 38.77 1.46 41.41 1.55 43.72 1.63 41.10 1.54

Ability to make ends meet
(ref. With great difficulty)

With some difficulty -97.19 -3.15 *** -94.66 -3.11 *** -100.47 -3.19 *** -97.11 -3.16 ***
Fairly easily -130.89 -4.16 *** -127.29 -4.09 *** -135.85 -4.23 *** -129.89 -4.13 ***
Easily -163.01 -5.13 *** -159.64 -5.09 *** -168.44 -5.2 *** -162.78 -5.13 ***

Education
Tertiary educationa -11.03 -0.83 -10.96 -0.83 -19.87 -1.6 -15.04 -1.18

Job characteristics
Job status (ref. Employee)

Civil servant -49.24 -4.02 *** -50.66 -4.13 *** -52.15 -4.25 *** -48.57 -3.8 ***
Self-employed -73.45 -4.61 *** -72.78 -4.33 *** -76.63 -4.92 *** -76.21 -4.86 ***

Full timea -0.68 -0.04 1.72 0.1 -0.37 -0.02 0.56 0.03
Sector (ref. Primary)

Manufacturing and Construction 4.50 0.18 3.58 0.13 20.91 0.84 5.83 0.22
Services -15.68 -0.64 -23.31 -0.91 -10.12 -0.44 -18.88 -0.76

Macroeconomic variables
GDP growth -2.43 -1.09 -2.44 -1.09 -2.42 -1.08 -2.47 -1.1

Harmonised unemployment
rate 1.81 0.88 1.87 0.91 1.73 0.84 1.78 0.86

Country dummies (ref. Spain) Yes Yes Yes Yes
Wave dummies (ref. 2004) Yes Yes Yes Yes
Log likelihood -2,464.6429 -2,465.6987 -2,465.4628 -2,467.3924
#obs 145,612 145,612 145,612 145,612
Notes: * 0.1 >p ≥ 0.05; ** 0.05 >p ≥ 0.01; *** p< 0.01. a Dummy variable. All models presented in this
table include interactions between the technological measure considered by the model and job status.

employees is the most affected by new technologies. While automation and ML increase the probability
of unemployment for this group, advances in AI reduce it. On the other hand, these workers do not
benefit significantly from a greater capacity to reorganize their occupations.

In fact, civil servants are the only workers who are benefited with lower unemployment probabilities
when their occupations have a higher reorganization capacity. Furthermore, civil servants significantly
reduce their unemployment probabilities when higher AI advances are produced in their occupations
and they are not affected by the labourunfriendly side of computerization and ML.

Finally, we find that the self-employed are the group least affected by technological change with re-
spect to the probability of unemployment. In particular, their unemployment probability only increases
significantly (at a 10% of significance) when their occupation is associated with a high ML suitability.
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FIGURE 8.3: Unemployment probability, job status and new technologies

Note: Predicted probabilities and marginal effects are from models V-VIII in Table 8.5

TABLE 8.5: Predicted probabilities of unemployment and marginal effects by job status and
technological effects.

Predicted probability
of unemployment Marginal effect

Technological measures EM CS SE EM CS SE
dy/dx z-stat dy/dx z-stat dy/dx z-stat

Automation Low 0.0027 0.0017 0.0013 Ref. Ref. Ref.
risk High 0.0041 0.0023 0.0014 0.0015 3.19 *** 0.0006 1.30 0.0002 0.20
AI Low 0.0041 0.0025 0.0017 Ref. Ref. Ref.
Advances High 0.0029 0.0017 0.0012 -0.0012 -2.45 ** -0.0009 -1.80 * -0.0005 -0.57
ML Low 0.0029 0.0017 0.0008 Ref. Ref. Ref.
suitability High 0.0040 0.0023 0.0021 0.001 2.31 ** 0.0005 1.24 0.0013 1.73 *
Reorganization Low 0.0034 0.0026 0.0014 Ref. Ref. Ref.
capacity High 0.0032 0.0015 0.0013 -0.0002 -0.48 -0.001 -2.42 ** -0.0001 -0.18

8.5 Conclusions

This chapter explores the consequences of the current technological change for the unemployment tran-
sitions of older workers, uncovering that different areas and subfields within the technological land-
scape may have varying effects on the unemployment probabilities of workers, with these effects further
diverging among different types of workers.

Regarding computerization the negative effect on employment is expected and widely reported in
the literature. For instance, Frey and Osborne (2017) reported that a significant proportion of jobs in
various sectors are at risk of automation due to advances in computerization. Regarding the case of
AI, we find a technology that acts as a shield serving as a protective factor against unemployment. A
possible explanation is that AI technologies may complement and support human labour rather than
replace it (Brynjolfsson & McAfee, 2014). However, the results also highlight that higher suitability to
ML, a subfield of AI, increases unemployment probabilities. This finding is consistent with Acemoglu
and Restrepo’s (2018a) research, which indicates that ML advancements can displace jobs, particularly

Universidad Internacional de Andalucía, 2023



8.6. Appendix 179

those requiring routine tasks, as ML algorithms become more efficient at performing these tasks.
Regarding the potential for reorganization of occupations, the results show that workers in occupa-

tions with higher reorganization capacity are less likely to transition to unemployment. This observation
aligns with Caroli and Van Reenen’s (2001) findings, which suggest that organizations with greater re-
organization capacity can better adapt to new technologies and market conditions, resulting in lower
unemployment probabilities for workers.

In addition to the heterogeneous effects of the various technologies, we emphasize that the impact of
technological advancements on unemployment transitions varies depending on job status. In this con-
text, employees are affected by all technological measures considered, except reorganization capacity,
while civil servants are influenced only by AI advances and reorganization capacity. This differentiation
in impact is supported by the work of Autor and Dorn (2013), who found that different types of workers
are affected unevenly by technological change. Finally, self-employed workers are exclusively affected
by ML suitability, a finding that can be further explored in future research to understand the unique
challenges and opportunities faced by this specific group of workers.

In order to mitigate the adverse effects of technological change on older workers’ unemployment
transitions, labour market policies may need to be reformulated matching the necesities of the un-
veiled technological scenario. This reformulation of labour market policies aimed to help older workers
navigating the digitalization technological wave should consider several aspects: (i) the promotion of
lifelong learning and retraining programs, enhancing the employability of workers in the face of com-
puterization, AI, and ML advancements (Schmidpeter & Winter-Ebmer, 2021; Dychtwald et al., 2004;
Yamamoto, 1990); (ii) the encourage age-friendly workplace practices, ensuring that older workers can
maintain their productivity in the face of technological change (Dropkin et al., 2016).; (iii) the strength-
ening of active labour market policies, mitigating the negative effects of technological change on labour
force participation (Grigoli et al., 2020); (iv) the fostering of collaboration between government, industry,
and educational institutions, ensuring that older workers have access to relevant training and education
opportunities (van Ours & Stoeldraijer, 2011; Cedefop, 2018); and (v) the support to the development
and adoption of complementary AI technologies, helping older workers to maintain their competitive-
ness in the labour market and reduce their unemployment probabilities (Brynjolfsson & McAfee, 2014).

8.6 Appendix
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TABLE A8.1: Descriptive statistics

. Total
sample

Switching
to unemployment

Non switching
to unemployment

#obs. (#ind.) 145, 612(16, 697) 377(362) 145, 235(16, 635)

Variable Mean
(S.D. overall)

Mean
(S.D. overall)

Mean
(S.D. overall) Min Max

Automation probability 0.523
(0.35)

0.651
(0.32)

0.523
(0.35) 0.0039 0.99

High automation risk 0.391 0.533 0.390 0 1

AI advances 3.326
(0.63)

3.1
(0.59)

3.33
(0.63) 1.51 5.29

High AI advances 0.693 0.560 0.694 0 1

Suitability to ML 3.496
(0.1)

3.511
(0.1)

3.496
(0.1) 3.19 3.75

High suitability to ML 0.416 0.480 0.415 0 1

Reorganization capacity 0.594
(0.05)

0.583
(0.06)

0.594
(0.05) 0.395 0.8

High reorganization capacity 0.506 0.414 0.507 0 1
Female 0.540 0.637 0.540 0 1

Age 52.4
(5.3)

50.74
(4.93)

52.42
(5.30) 40 66

With partner 0.809 0.748 0.809 0 1

Health 2.9
(1.01)

3.2
(0.96)

2.9
(1.01) 1 5

Excellent 9.99 5.57 10 0 1
Very good 22.83 14.32 22.85 0 1
Good 41.30 41.64 41.30 0 1
Fair 21.12 31.30 21.10 0 1
Poor 4.75 7.16 4.75 0 1

Ability to make ends meet 2.91
(0.96)

2.46
(1.01)

2.9
(0.96) 1 4

With great difficulty 8.15 19.89 8.12 0 1
With some difficulty 26.28 33.42 26.26 0 1
Fairly easily 31.82 27.85 31.83 0 1
Easily 33.75 18.83 33.79 0 1

Tertiary education 0.308 0.223 0.308 0 1
Job status

Employee 52.96 68.97 52.92 0 1
Civil servant 37.39 27.06 37.42 0 1
Self-employed worker 9.65 3.98 9.66 0 1

Full time 0.868 0.849 0.868 0 1
Sector

Primary 6.31 6.63 6.31 0 1
Manufacturing and Construction 24.57 30.77 24.55 0 1
Services 69.12 62.60 69.14 0 1

GDP growth 2.10
(3.66)

1.79
(3.93)

2.10
(3.66) -14.8 11.9

Harmonised unemployment rate 8.92
(4.19)

8.90
(3.84)

8.92
(4.19) 3.4 27.5

Universidad Internacional de Andalucía, 2023



181

Chapter 9

Digitalization and Worker Mobility: Impact
on Portuguese Labour Dynamics

9.1 Introduction

The world is undergoing one of the most significant technological revolutions in history. Digitalization
is causing profound changes in all aspects of the economy - and, in particular, the labor markets. While
certain digital technologies have an impact across all sectors, others likely affect specific occupations
in distinct ways. Although technological advances often make the use of human labor inefficient for
some tasks, they may also create new tasks in which labor has a comparative advantage (Acemoglu and
Restrepo 2019).

Digitalization, defined as the transformation of business processes by leveraging digital technolo-
gies, has both a labor-unfriendly and a labor-friendly side (Montobbio et al. 2022). The labor-unfriendly
side, labelled destructive digitalization, carries on the process of task automation started with the intro-
duction of the first machines (Hitomi 1994). The labor-friendly side, dubbed transformative digitaliza-
tion, relates to the rise of artificial intelligence (AI), a new general-purpose technology requiring human
skills for its development.

Destructive digitalization has been equated in the literature to computerization, meaning job au-
tomation by means of computer-controlled equipment, including both machinelearning technologies
and robotics (Frey and Osborne 2017). Frey and Osborne (2017) claim that 47% of US jobs are at high
risk of computerization. Other studies make similar predictions. In a report about automation and
computerization in Portugal, Duarte et al. (2019) predict the loss of about 40% of manufacturing jobs. 1

On the other hand, the emergence of AI is at the center of the current industrial revolution. Occu-
pations hitherto unscathed by automation are now susceptible to be impacted by AI (Acemoglu and
Restrepo 2018a; Grace et al. 2018). This raises a debate about whether human work will be replaced or
complemented by AI (Tschang and Almirall 2021). Recent studies have highlighted the labor-friendly
side of AI. Acemoglu et al. (2022) document rapid growth in AI-related job vacancies and reduced hir-
ing in non-AI positions, with no discernible impact on employment or wages. Alekseeva et al. (2021)
document a major increase in the demand for AI skills between in the US economy. Damioli et al. (2022)
and Yang (2022) find evidence of a positive and significant impact of AI patents on employment.

In this line, Fossen and Sorgner (2019) judge AI to be a transformative digitalization technology due
to its complementarity with human labor. According to this destructivetransformative duality, they
propose a systematic classification of occupations regarding the exposure to the destructive and trans-
formative digitalization sides into four categories: "Rising Stars", "Machine Terrain", "Human Terrain",
or "Collapsing Occupations" (Table 9.1).

1Other studies, however, downplay the negative impacts due in part to the use of different methodologies, focusing on the
computerization of specific tasks rather than whole occupations. Arntz et al. (2016, 2017) find that the actual percentage of
jobs at risk of automation in the OECD is about 9%.
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TABLE 9.1: Effects of Digitalization on Occupations

Low destructive effects High destructive effects
High transformative effects I. Rising stars occupations II. Machine terrain occupations
Low transformative effects III. Human terrain occupations IV. Collapsing occupations
Source: Fossen and Sorgner (2019)

Computerization (destructive) and AI (transformative) are strictly related technologies, converging
and jointly shaping a new pervasive knowledge base (Santarelli et al. 2022). This will result in a size-
able reconfiguration of labor, as many occupations disappear or change drastically while others emerge,
taking advantage of the opportunities brought by the new technologies and knowledge. The reconfig-
uration implies new patterns of worker mobility across occupations, as previous technological changes
have done.

General-purpose technologies (for example, computerization and AI) lead to high levels of occupation-
to-occupation and sector-to-sector mobility (Gaggl et al. 2021). Bárány and Siegel (2020) show that most
of this reallocation is due to occupation-specific technological changes, driving the decline of routine-
intensive occupations and the mobility of displaced workers to different jobs (Blien et al. 2021). Sorgner
(2017) finds that workers in occupations at high computerization risk are more likely to experience job
loss, demotion, or reassignment to a job in a new field.

While the potential for digitalization to create and destroy jobs by making certain skills obsolete
while promoting others has been the object of a variety of studies, worker mobility across the digital-
ization terrains is relatively unaddressed in the literature. Yet, labor mobility across sectors (and, likely,
geographical spaces) will need to play a key role in minimizing adjustment costs to digital transforma-
tion and the spread of AI applications. Recognizing the need for, and enabling this mobility is necessary
to curtail unemployment and preserve social inclusion and income redistribution. Research generating
further insight on the trends associated with intersectoral labor mobility associated with AI and digital-
ization policymakers in industry and education would arguably benefit policymakers at the industrial,
educational, and regional levels.

This chapter addresses this gap by studying labor mobility between occupations at different digi-
talization exposure levels, and how worker, firm and industry characteristics intervene in such moves.
Specifically, we analyze how workers displaced from a job after firm closure move between occupa-
tions differently impacted by computerization and artificial intelligence in the Portuguese economy.
The econometric analysis uses longitudinal linked employer-employee data and relies on multinomial
models. By focusing on displaced workers, we attenuate possible selection effects that may arise from
voluntary job mobility, thus improving the identification of the main effects. Portugal - a country with
an aging, low-skill, low-wage workforce - may serve as a case study for extreme impacts of destructive
digitalization due to its reliance on low-skill low labor that may be easily automatable. Portugal may
also yield interesting conclusions on the transformative potential of AI, as it is undergoing a dramatic
process of upskilling with a fast growing rate of individuals with higher education degrees.

We find that higher levels of human capital facilitate moves into occupations with high exposure to
the transformative effects of digitalization, and especially so into rising star occupations where skilled
workers find large complementarities with AI while being protected from the destructive side of dig-
italization because they perform tasks that are hard to automate. We also find a generalized move of
women into the Machine Terrain, irrespective of the type of previous employment, while older workers
tend to find re-employment in the same terrain from which they were displaced. In addition, our results
point to a reshuffling process after a larger period spent without employment, where workers are less
likely to return to their original terrain, sometimes improving their levels of exposure to digitalization
but other times not.

Our study presents a detailed examination of the mobility processes of workers across occupations
differently impacted by both the transformative and destructive sides of digitalization. The patterns
observed are promising for the segment of workers who are able to take advantage of the transformative
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impacts of artificial intelligence, but may also unveil harder times for those who cannot break away from
the destructive effects.

9.2 Background and hypotheses

The literature on the impact of technological progress on the labor market has traditionally focused on
how new technologies displace and relocate workers (e.g., Acemoglu and Autor 2011; Acemoglu and
Restrepo 2019), creating threats and opportunities for differently skilled workers. While the first studies
of automation, job creation and destruction were theoretical and descriptive (e.g., Moos 1957; Atkinson
and Stiglitz 1969; Leontief 1978, 1983), computational advances in data storage, processing and analysis
have made detailed examination of the process possible (e.g., Dauth et al. 2017; Graetz and Michaels
2018; Jerbashian 2019; Feng and Graetz 2020; Domini et al. 2021; Downey 2021; FosterMcGregor et al.
2021).

The automation potential of new general-purpose technologies such as Robotization, Computeriza-
tion and Artificial Intelligence (AI) is such that scholars are struggling to predict and map the expected
impact of these technological changes on the workforce. To fulfil this purpose, Frey and Osborne (2017)
develop a methodology based on the construction of occupational and task-based measures aiming
to identify and document the potential impact of technological advances at the occupation level. The
approach based on task- and occupation-specific measures of technological impacts has enabled re-
searchers to account for Machine Learning suitability (Brynjolfsson et al. 2018), AI advances (Felten et
al. 2018), AI progress (Felten et al. 2019), AI impacts (Webb 2020), and AI exposure (Felten et al. 2021)
at the industry, labor, and income levels.

Manyika et al. (2017) analyze more than 2,000 work activities across 800 occupations discovering
that about half of the carried out by human labor could potentially be automated by adapting currently
available technologies. They conclude that, while less than 5 percent of all occupations can be auto-
mated entirely using demonstrated technologies, about 60 percent of all occupations have at least 30
percent of constituent activities that could be automated. Dengler and Matthes (2018) find that, if one
assumes that entire occupations (composed of several tasks) are replaceable, approximately 47% of Ger-
man employees experience an automation risk, but only 15% of German jobs are at risk when assuming
that only certain tasks can be substituted. This last estimation downsizing the share of jobs at high com-
puterization risk is closer to the one offered by Arntz et al. (2016 2017) arguing that only 9% of OECD
jobs suffer from high automation risk.

Just as robotics and machine learning follow the natural evolution of skill-biased automation tech-
nologies, the appearance of AI seems to establish a new paradigm yet to be explored. This general-
purpose technology is aimed to affect all forms of labor. Researchers believe that AI will outperform
humans in many activities in the following years (Grace et al. 2018): for example, translating languages
(by 2024), writing high-school essays (by 2026), driving a truck (by 2027), working in retail (by 2031),
writing a bestselling book (by 2049), and working as a surgeon (by 2053). Furthermore, they predict
a 50% chance of AI outperforming humans in all tasks in 45 years and automating all human jobs in
120 years. However, the fact that AI is going to outperform human labor does not necessarily imply
its replacement. Many studies indicate multiple instances of high complementarity between human
labor and AI (e.g., Alekseeva et al. 2021; Acemoglu et al. 2022; Damioli et al. 2022; Yang 2022). The
AI revolution promises to bring multi-level changes to the economy. For instance, Adner et al. (2019)
foresee qualitative - and not only quantitative - changes due to three fundamental processes underlying
the actual digital transformation -representation, connectivity, and aggregation_- indicating that these
processes will continue to push firms in all industries to create and capture value differently, develop
new business models and ecosystems, manage new forms of intellectual property, grow scale and scope
differently, and create new opportunities and challenges for organization design and management prac-
tices. Also in this line, Ciarli et al. (2021) argue that digitalization is often more about the displacement
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and deep transformation of activities and their organization than about a simple one-to-one replacement
of jobs. Therefore, the term transformative digitalization has naturally arisen from and equated to AI.

Fossen and Sorgner (2019) develop a pioneering work focusing on the duality of digitalization, iden-
tifying automation through computerization as the destructive side (the negative effects, where tech-
nology mostly replaces human workers) and AI as the transformative side (the positive effects, com-
plementary to labor, where human-machine interactions are extensive). They propose a typology of
occupations according to these considerations, as shown in Table 9.1, mapping labor into four differen-
tiated sections according to the digitalization effects upon occupations.

Specifically, these authors identify ’Human Terrain’ occupations as being those suffering few or no
impacts from both the destructive and the transformative sides of digitalization, and ’Machine Terrain’
occupations as those highly affected by both sides of technological change. Additionally, they designate
as ’Rising Stars’ those occupations undergoing low negative impacts from destructive digitalization
and high positive effects from transformative digitalization, while defining ’Collapsing Occupations’ as
those enduring strong negative impacts from destructive digitalization and low positive effects from
transformative digitalization.

The literature seems to clearly establish that skills, experience, education and training play a relevant
role on how new technologies displace and relocate workers. For the specific case of AI/digitalization,
Fossen and Sorgner’s technological terrains constitute a useful tool to analyze labor mobility. We there-
fore propose that, depending on individual characteristics such as formal education, skill levels, age,
and work experience, workers being displaced from their jobs may be more likely to remain unem-
ployed, find jobs in similar occupational terrains, or move to occupations that are more or less impacted
by destructive and transformative digitalization. Depending on the interaction between workers’ char-
acteristics and digitalization, it is possible to formulate predictions regarding how such characteristics
are likely to impact the mobility of displaced workers with reference to occupations where destructive
and transformative digitalization play different roles.

First, we expect college-educated workers to be more likely to relocate to a rising star occupation, as
collected by the second hypothesis. The argument behind this hypothesis is that technological progress
raises the demand for educated workers (Autor et al. 1998). Indeed, computerization is associated
with reduced labor input of routine manual and routine cognitive tasks, and increased labor input of
nonroutine cognitive tasks, translating task shifts into education demand (Autor et al. 2003). Thus,
we expect occupations more impacted by AI to increase the labor demand of workers with tertiary
education and occupations more impacted by destructive digitalization to decrease the labor demand
of workers with college education. We therefore propose that:

Hypothesis H1: College-educated workers are more likely to move into a rising star occupation.

Regarding task/occupation-specific skills, we expect workers in high-skilled occupations to have
a high complementarity with transformative digitalization, as workers with college education, but a
higher likelihood to complement destructive digitalization. The reason is based in the capital-skill com-
plementarity assumption. In fact, macroeconomic models have presented automation as a process in
which unskilled workers are displaced by the combination formed by equipment capital and skilled
workers. Under this assumption, Krusell et al. (2000) explain the evolution of the skill premium in the
1970s US . Inspired by the work on ’skill-biased technological change’ in which new technologies could
lead to upskilling as machines substitute unskilled labor and require more skilled labor to operate and
design them (Griliches 1969; Autor et al. 1998), 2 we propose that:

Hypothesis H2a: High-skilled workers are more likely to leave the human terrain by moving to any other terrain
more impacted by digitalization.

2The skill-biased technological change assumption contrasts with the ’deskilling’ hypothesis in which new technologies
could lead to the substitution of skilled labor by machines that are operated by unskilled labour (Braverman 1974).
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Hypothesis H2b: High-skilled workers from occupations experiencing high transformative digitalization are
likely to remain in the high transformative digitalization terrains.

Firm- and industry-specific experience are important components of human capital that are likely
to influence transitions within and across terrains. We expect that workers with experience in large
firms should be more likely to be re-employed in the same terrain to take advantage of their previous
experience. Employment in a large firm is likely to provide a positive signal regarding both firm- and
industry-specific human capital that increases the chances of a displaced worker finding a job match
in the same terrain. Large firms may also, through their human resource departments, provide guid-
ance and support during the process of job relocation after displacement, thus facilitating relocation
(Nyström 2018).

Similarly, employment in knowledge-based or high technology intensity sectors is likely to provide
specific experience which will be more valued by firms in high tech sectors and rising star occupation
terrains. These firms are more likely to provide formal training in new technologies that compensate for
lower levels of formal education and offer a signal of the worker’s specific skills. We therefore predict
that:

Hypothesis H3a: Workers from large firms are more likely to move to occupations in the same terrain.
Hypothesis H3b: Workers from knowledge/technology intensive firms are more likely to move to rising star
occupations.

Finally, we expect older workers to be less propense to switch terrains. The shorter the working
life horizon is, the less the worker will relocate to a different terrain, since they will be looking for a
relocation in the same occupation or in a similar occupation.

Charness (2006) argues that older workers will typically require up to twice as much time to master
a new application or technology if it is weakly related to prior knowledge, so it is to be expected that
they will try to relocate in the same terrain where they have some expertise and can find a competitive
advantage relative to younger, more trained, cohorts of workers (Dychtwald et al. 2004). This behavior
of older workers is not something specific from digitalization but a common reaction at any technologi-
cal change, since older workers are less likely to have the requisite new skills and are often presumed to
be less able to adapt (Adler 1988). Nevertheless, although this is not new, the competitive disadvantage
of older workers managing new technologies is expected to be more pronounced in the digitalization
technological change, since the relative deterioration of job prospects for older workers implies that
this age group increasingly has more difficulties to adapt to technological progress (Schmidpeter and
Winter-Ebmer 2021).

Hypothesis H4: As workers age, they are more likely to stay in the same terrain and less likely to move across
terrains.

9.3 Data

To study worker mobility across occupations with different levels of exposure to digitalization, we use
Quadros de Pessoal (QP), a linked employer-employee longitudinal dataset covering all Portuguese
firms with at least one wage-earning employee. QP is assembled from a mandatory survey conducted
yearly by the Portuguese Ministry of Employment and Social Security since 1985, containing an average
of about 2.8 million workers in 300,000 firms per year. This dataset includes information on workers’
occupation, education level, hierarchical level, gender and age, as well as wage earnings. For firms, QP
provides the number of employees, geographical location and industrial sector of each establishment.

OECD’s International Standard Classification of Occupations (ISCO) 3 indicates which tasks are de-
manded of workers within each specific hierarchical level, as well as which skills are required. In 2010 ,

3https://www.oecd-ilibrary.org/social-issues-migration-health/occupational-classification-isco88304441717388.
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the occupation codes changed from the ISCO-88 to the ISCO-08 classification. The equivalence between
the two classifications is not complete. Thus, to avoid issues of measurement error, and given that the
focus of our work is on occupational mobility, our analysis covers the period between 2010 and 2019.

Regarding exposure to digitalization, we adapt Fossen and Sorgner’s (2019) classification of occupa-
tions to consider two forward-looking measures of impacts of digitalization: transformative effects, and
destructive effects. Occupations are then classified into four digitalization terrains: Rising Stars, Ma-
chine Terrain, Human Terrain, and Collapsing Occupations (see Table 9.1). 4 Occupational exposure to
destructive impacts of digitalization originates from the computerization risks of occupations proposed
by Frey and Osborne (2017), which captures the probability of workers in an occupation being replaced
by computerization over the next decades. Exposure to the transformative impacts comes from Felten
et al.’s (2021) index of predicted effects of artificial intelligence in the coming future. 5 Following Fos-
sen and Sorgner (2019), an occupation is subject to high impacts of the destructive and transformative
effects if its score is above the median.

Our sample is composed of paid employees who are at least 18 years old. Workers are censored
once they reach 55 years old to exclude the possibility of a worker leaving an occupation into (early)
retirement. We rely on an identification strategy of studying workers displaced by firm closure. The
involuntary job mobility forced by the firm closure may mitigate selection effects of workers voluntarily
switching jobs and/or occupations due to unobserved heterogeneity. This is especially true when we
consider that the firm closure is likely due to firm performance rather than the productivity of a single
(nonowner) employee. A similar strategy has been popularized in the labor economics literature by
seminal works such as Gibbon and Katz (1991, 1992), Jacobson et al. (1993) and Neal (1995). Recent
examples of this strategy include Castro-Silva and Lima (2022), Goos et al. (2021) and Schmidpeter and
Winter-Ebmer (2021).

We observe the moment of firm closure to collect firm and worker characteristics (including original
occupation), and then identify the moment the worker rejoins the dataset, registering the new occu-
pation code and year of return. We cannot know the destination of workers who do not return to the
dataset within the study period. This includes workers who are no longer present in the labor market
during the study but may also include workers who move into sectors not covered by QP (namely, pub-
lic administration). Some workers do not transition directly from one year to another; if they take longer
than one year, we say they had a non-employment spell. 6 We exclude workers who do not return to
the dataset until 2019 as we are only focused on job-to-job mobility. Because unobserved heterogene-
ity may play a role in finding a new job after displacement, we place no restriction regarding the time
until workers find a new job. This should allow for enough heterogeneity in the skill level of workers
in our sample. Additionally, controlling for time spent in non-employment should capture some of the
diversity of skill levels. After applying the described restrictions as well as data cleaning, our working
sample is composed of 412,897 worker-year observations of 382,164 distinct workers in 106,182 firms.

The dataset includes a categorical job-level variable that classifies workers according to their hierar-
chical position within the firm, task complexity and responsibility into eight levels determined by the

4See also Table A9.1 in Appendix for the top occupations in each terrain in terms of employment numbers.
5Fossen and Sorgner (2019) use Felten et al.’s (2018) backward-looking measure of the impacts of AI on occupations from

2010 to 2015. Since Frey and Osborne’s (2017) measure is forward-looking, and given the more recent proposal by Felten et
al. (2021), we believe the classification into digitalization terrains should also benefit from a forward-looking measure of AI
impacts. For robustness, we have also used the original Felten et al. (2018) score for the classification and identified no major
differences in results.

6"Non-employment" is an encompassing term that includes workers that left the dataset for a period of time of more than
one year. Usually, these workers are unemployed, but they also might have been working as civil servants, or left the labor
market entirely. Given the higher stability and benefits of civil service work relative to private employment (especially for the
lower skilled), shifts from the public to the private sector are uncommon. Thus, our "non-employment" category is mostly
composed of unemployed individuals. This can be confirmed using data from the Portuguese Labor Force Survey.
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Portuguese law. 7 For the sake of parsimony, we summarize the variable into two classes: 1) high-
skilled workers are those in the top four job-levels (managers, supervisors, team leaders and highly
qualified professionals); 2) low-skilled workers are the bottom four levels (qualified and semi-qualified
professionals, unskilled professionals, trainees and apprentices). We classify firms according to the
technology and/or knowledge intensity of the industry they operate in, following Eurostat’s industry
level (NACE Rev. 2 codes) definition. Throughout the text, knowledge intensive firms or industries
encompass both knowledge-intensive services firms and high (or mediumhigh) technology-intensive
manufacturing firms.

Table 9.2 presents the transition matrix between digitalization terrains. The main diagonal of the
transition matrix reveals significant path dependence, in the sense that most displaced workers will find
employment in the same digitalization terrain they were in before displacement. The path dependence
may be explained by specific sets of skills that make these workers more productive in similar jobs.
There also seems to be some exchange between terrains with similar levels of transformative effects of
digitalization.

TABLE 9.2: Transitions matrix: proportion by origin

from
Rising
Stars

from
Machine
Terrain

from
Human
Terrain

from
Collapsing

Occupations
Total

to Rising Stars 71.46 12.52 4.06 3.80 18.03
to Machine Terrain 12.82 66.96 4.18 5.13 16.52
to Human Terrain 5.50 6.26 68.91 10.82 19.34
to Collapsing Occupations 10.22 14.26 22.86 80.25 46.11
Total 100.00 100.00 100.00 100.00 100.00

A relatively large proportion of workers in occupations with high exposure to the transformative
effects will transition to an occupation with a similar level (12.8% of workers previously in Rising Stars
occupations go to the Machine terrain, and 12.5% originally in the Machine Terrain switch to a ris-
ing star job). An identical pattern occurs for workers with low exposure to the transformative effects
(e.g., 22.9% of workers displaced from the Human Terrain find employment in Collapsing Occupations).
Downey (2021) offers a plausible explanation for this pattern, stating that middle-wage occupations’
routine tasks targeted by automation technologies are only partially automated in the sense that these
can be performed by less-skilled workers. Then, workers in the human terrain whose previous exposure
to technology was relatively small may now switch to a collapsing occupation that has been partially
automated. A possible alternative explanation for the high proportion of stayers in Collapsing Occu-
pations may be that these workers lack the necessary human capital that allows them to step into the
terrains less exposed to digitalization.

In Table 9.3 we present descriptive statistics for the main variables, across the different digitalization
terrains at the moment of displacement. We can see how individuals in the four terrains differ in terms
of skills. Close to 70% of workers in Rising Stars are highly skilled, with more than half holding at least
a bachelor’s degree.

7QP micro-data discriminates the hierarchy in the firm as seen in Table A9.2 in Appendix. The Table provides a descrip-
tion of the job levels and the corresponding tasks and skills required by each level. The hierarchical levels comprise three
dimensions: the type of task and its complexity; the level of responsibility/authority; and the skills necessary to perform the
corresponding job. The levels are defined by the Ministry of Labor questionnaire. All firms have to use these same levels when
answering the survey. See Baptista et al. (2012) for further description.
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TABLE 9.3: Descriptive statistics by original digitalization terrain

Rising Machine Human Collapsing All
Stars Terrain Terrain Occupations

College 0.52 0.24 0.04 0.02 0.16
(0.50) (0.43) (0.20) (0.15) (0.36)

High Skills 0.69 0.28 0.12 0.05 0.22
(0.46) (0.45) (0.33) (0.21) (0.41)

Female 0.51 0.64 0.40 0.44 0.48
(0.50) (0.48) (0.49) (0.50) (0.50)

Age 36.46 35.59 38.12 36.51 36.64
(8.35) (8.64) (9.57) (9.72) (9.31)

Above median age 0.32 0.29 0.43 0.37 0.36
(0.47) (0.45) (0.49) (0.48) (0.48)

Tenure 5.92 5.69 4.97 4.55 5.07
(6.72) (6.91) (6.47) (6.39) (6.58)

Years in non-employment 0.87 0.89 0.97 1.01 0.96
(1.37) (1.38) (1.45) (1.46) (1.43)

Years in non-employment > 1 0.45 0.45 0.48 0.50 0.48
(0.50) (0.50) (0.50) (0.50) (0.50)

Number of employees 471.40 428.84 296.14 305.24 355.18
(1189.70) (1214.50) (1133.78) (1120.77) (1154.27)

Large firm (>=50) 0.44 0.39 0.32 0.27 0.33
(0.50) (0.49) (0.47) (0.44) (0.47)

Knowledge intensive 0.50 0.39 0.18 0.11 0.24
(0.50) (0.49) (0.38) (0.31) (0.43)

N 77,896 67,467 72,982 194,501 412,846
Mean values at moment of displacement (standard deviations in parentheses).

While workers in the Machine Terrain are also relatively skilled (but to a much lesser degree), those
in the Human Terrain or Collapsing Occupations have very low levels of education and firm-specific
skills. Workers previously in the Rising Stars or Machine Terrain categories also have longer tenures and
spend less time in non-employment, in line with their higher ability levels. The proportion of workers
previously in firms with 50 or more employees, and in knowledge-intensive firms decreases as we move
from Rising Stars to Collapsing Occupations. 8 Women account for more than half of workers in rising
star occupations and especially in the machine terrain where the share is around 64%. Our exploratory
descriptive analysis points to a large gap in terms of skills and human capital consistent with the de-
mands of the occupations in each terrain and with the degree of complementarity (or destructiveness)
that digitalization has for jobs in the four occupation categories.

9.4 Empirical model

9.4.1 Transitions across digitalization terrains

We study transitions across digitalization terrains through multinomial logit models. With m possi-
ble transition destinations and m possible origins, the model specifies that the probability of worker i
transitioning from digitalization terrain f to destination terrain d is given by:

8The average firm size (number of employees) in all categories is large for Portuguese standards. We note that some very
large firms closed during this period (the largest of which had 7,604 employees), which results in a mean value that overstates
the real size of closed firms. The median firm size at displacement is 15 employees, and the 75th percentile is 76 employees.
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pi f d =
exp

(
x′iβ f d

)
∑m

l=1 exp
(

x′iβ f l

)
Where d and f may be one of Rising Stars, Machine Terrain, Human Terrain, or Collapsing Occupa-

tions, xi is the vector of regressors, and β f d are the parameters to be estimated for each origin-destination
pair. We thus estimate m = 4 multinomial models, one for each origin terrain. Each model is identified
when one of the β f d is set to zero. Our base case is when no transition occurs (the worker stays in the
same terrain). The model coefficients are thus interpreted with respect to the no transition state.

For ease of interpretation, we compute average marginal effects on the probability of transition from
f to d when a regressor changes. We focus on our main variables, namely college education, skill level,
gender, age, years in non-employment, firm size class, and knowledge-intensity class. Our models
include additional controls for worker and firm characteristics at the moment of displacement such as
tenure, type of contract (permanent or not), part-time work, region and year dummies.

9.5 Results

9.5.1 Transitions across digitalization terrains

We begin by estimating the multinomial logit models for transitions across the four digitalization ter-
rains, and then proceed with the computation of the marginal effects of the main regressors. The
marginal effects are thus interpreted as the change in the probability of moving from one terrain to
another when the regressor changes. We present separate tables for each of the main regressors. Ta-
ble 9.4 shows the marginal effects of having a college degree compared to those without one, for each
origin-destination pair.

TABLE 9.4: How college affects transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars 0.201∗∗∗ 0.088∗∗∗ 0.062∗∗∗ 0.114∗∗∗

(0.004) (0.004) (0.006) (0.005)
To Machine Terrain −0.042∗∗∗ 0.050∗∗∗ 0.022∗∗∗ 0.068∗∗∗

(0.003) (0.004) (0.005) (0.004)
To Human Terrain −0.053∗∗∗ −0.045∗∗∗ 0.054∗∗∗ −0.049∗∗∗

(0.002) (0.002) (0.009) (0.004)
To Collapsing Occupations −0.107∗∗∗ −0.092∗∗∗ −0.138∗∗∗ −0.133∗∗∗

(0.002) (0.003) (0.006) (0.007)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

Having college education always favors moves into rising star occupations more than to any other
destination, whichever the previous occupation class was at the moment of displacement. This effect
is especially strong for workers previously in rising stars occupations (20 percentage points). As a
consequence, for workers in rising star occupations, higher education strongly reduces the probability of
moves into other occupation classes. These results corroborate hypothesis 1 of this study, suggesting that
digitalization and education interact influencing the occupation where the displaced workers’ relocate.
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College education also protects workers from moves into collapsing occupations as well as into the
human terrain (except for those previously in the human terrain). In fact, one can argue that higher
education promotes upgrading into occupations where AI will have high transformative effects, away
from occupations where AI is less transformative. This is especially interesting for workers previously
in collapsing occupations, where education increases the likelihood of moves to occupations with high
transformative effects of AI (rising stars and machine terrain) at the expense of going into the human
terrain or even staying in collapsing occupations. For many college-educated workers, displacement
may be an opportunity for occupation upgrading.

The marginal effects of having a high skilled job are shown in Table 9.5. Workers in high skilled jobs
follow a similar pattern to college-educated workers, albeit with less intensity. An exception are high
skilled workers in the human terrain who may move into collapsing occupations instead of finding a
new job in the human terrain. For workers previously in collapsing occupations, high skills increase the
likelihood of upgrades into occupations with high transformative effects of AI (especially rising stars),
or, to a much lesser extent, into the human terrain ( 0.6 p.p., small but significant at 10% ). Results from
Table 9.5 support hypotheses 2a and 2 b of this study. High degrees of human capital, be it education of
firm specific skills, may protect workers from the high destructive effects of digitalization and benefit
from complementarities with the transformative effects.

TABLE 9.5: How high skills affect transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars 0.080∗∗∗ 0.034∗∗∗ 0.050∗∗∗ 0.059∗∗∗

(0.004) (0.003) (0.003) (0.003)
To Machine Terrain −0.028∗∗∗ 0.057∗∗∗ 0.009∗∗∗ 0.024∗∗∗

(0.003) (0.004) (0.003) (0.003)
To Human Terrain −0.017∗∗∗ −0.022∗∗∗ −0.101∗∗∗ 0.006∗

(0.002) (0.002) (0.006) (0.004)
To Collapsing Occupations −0.034∗∗∗ −0.069∗∗∗ 0.041∗∗∗ −0.089∗∗∗

(0.002) (0.003) (0.005) (0.005)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

Results in Table 9.6 show that previous experience in a relatively large firm (more than 50 employ-
ees) strongly increases the likelihood of re-employment in the same terrain, while at the same time
decreasing moves to any other destination, compared to workers displaced from firms with fewer than
50 employees. This provides support to hypothesis 3a of the study. Large firms often have well-specified
organizational structures, where many workers have a well-defined set of tasks. Workers displaced from
such firms may carry with them a signal of that specificity that hiring firms interpret as an indication of
where the worker will better fit in the new organization.

Results in Table 9.7 show that workers displaced from knowledge/technology intensive industries
are driven into rising stars occupations, except when they come from the machine terrain. They also
move away from collapsing occupations. This provides partial support to hypothesis 3c. Presumably,
in these industries there is a larger proportion of rising stars occupations and not much employment in
collapsing professions.
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TABLE 9.6: How working in a large firm (>= 50) affects transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars 0.124∗∗∗ −0.039∗∗∗ −0.023∗∗∗ −0.002∗

(0.003) (0.003) (0.002) (0.001)
To Machine Terrain −0.036∗∗∗ 0.120∗∗∗ −0.018∗∗∗ −0.014∗∗∗

(0.003) (0.004) (0.002) (0.001)
To Human Terrain −0.036∗∗∗ −0.023∗∗∗ 0.100∗∗∗ −0.012∗∗∗

(0.002) (0.002) (0.004) (0.002)
To Collapsing Occupations −0.052∗∗∗ −0.057∗∗∗ −0.058∗∗∗ 0.028∗∗∗

(0.002) (0.003) (0.003) (0.002)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

TABLE 9.7: How working in a knowledge-/technology-intensive industry affects transi-
tions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars 0.102∗∗∗ 0.004 0.027∗∗∗ -0.001
(0.003) (0.003) (0.003) (0.002)

To Machine Terrain −0.041∗∗∗ 0.098∗∗∗ 0.008∗∗∗ 0.009∗∗∗

(0.002) (0.004) (0.002) (0.002)
To Human Terrain −0.006∗∗∗ −0.015∗∗∗ 0.025∗∗∗ 0.019∗∗∗

(0.002) (0.002) (0.005) (0.003)
To Collapsing Occupations −0.055∗∗∗ −0.087∗∗∗ −0.061∗∗∗ −0.027∗∗∗

(0.002) (0.003) (0.004) (0.003)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

Results in Table 9.8 indicate that age increases the likelihood of staying in the same terrain revealing
a degree of path dependence, thus supporting hypothesis 4 . This may be linked to accumulated experi-
ence in occupations in the origin terrain, as well as a reluctance of older workers to change occupations
more drastically because of higher opportunity costs of changing combined with a higher costs of new
skill acquisition. Through the years of experience, these workers’ may have accumulated skills that are
very specific to their origin terrain. This may be both a blessing and a curse. On one hand, it suggests
these skills are still valuable, at least for those that find employment. On the other hand, older workers
may lack the necessary skills to switch to occupations of the future.

To a lesser extent, age seems to facilitate moves into the human terrain reflecting older workers’
somewhat more manual set of skills which are harder to replace by digitalization but enjoy fewer com-
plementarities, coupled with the erosion of older workers’ skills with technology and smaller payoffs
from learning to use new technologies because of shorter career horizons (Ahituv and Zeira 2011). In
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TABLE 9.8: How age (years) affects transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)
To Machine Terrain −0.001∗∗∗ 0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
To Human Terrain 0.000∗∗∗ 0.000∗∗∗ 0.005∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000)
To Collapsing Occupations −0.001∗∗∗ −0.002∗∗∗ −0.003∗∗∗ 0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
N 77896 67467 72982 194501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

addition, we observe that age reduces switches to Rising Stars or to the Machine Terrain from any other
terrain, indicating that older workers are less likely to take advantage of AI developments. Instead,
older workers displaced from an occupation at high computerization risk will be relocated in a similar
occupation - also at high computerization risk - where their relocation learning efforts are smaller, or to
a human terrain occupation where they are safe from automation. Battisti and Gravina (2021) suggest
that older workers experience a higher complementarity degree with robots possibly because they are
not performing challenging manual tasks (which are typically carried out by the middle-aged).

9.5.2 Other factors influencing transitions

We ran additional models in order to explore the effects of additional individual attributes on the transi-
tions of displaced workers across occupational terrains. Results in Table 9.9 reveal that women are more
likely to move into the machine terrain than men, regardless of origin. Women are, nonetheless, better
able to avoid moving into collapsing occupations, as well as moving away from occupations with low
transformative effects, although in this regard the difference to men is very small. Interestingly, women
displaced from rising star occupations are penalized in moves to a new rising star job compared to men,
instead finding employment in the machine terrain.

Once female workers are displaced from an occupation with high transformative digitalization ef-
fects (rising star occupations, machine terrain), they are less likely to relocate in an occupation with low
transformative digitalization effects (human terrain, collapsing occupations). While other studies have
highlighted that females are more affected by destructive digitalization, we show they are also more
affected by transformative digitalization.

Workers undergoing a spell in non-employment after displacement tend to not return to the original
occupation class, as evidenced by the main diagonal of Table 9.10. Instead, those that return to employ-
ment after more than a year without working are more likely to end up in collapsing occupations. A
possible reason for this is related to depreciation of specific human capital depreciates which may occur
while in non-employment. Continuous technological progress means that, while in non-employment,
workers may not be able to keep up with new developments. Research in labor economics suggests
that interrupted careers translate into depreciation of knowledge stocks, making workers less likely to
return to the same types of occupations they held before displacement (Mincer and Ofek 1982).
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TABLE 9.9: How gender (female) affects transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars −0.017∗∗∗ −0.022∗∗∗ 0.003∗∗ 0.006∗∗∗

(0.003) (0.003) (0.002) (0.001)
To Machine Terrain 0.047∗∗∗ 0.076∗∗∗ 0.008∗∗∗ 0.033∗∗∗

(0.002) (0.004) (0.002) (0.001)
To Human Terrain −0.011∗∗∗ −0.035∗∗∗ -0.005 0.001

(0.002) (0.002) (0.004) (0.001)
To Collapsing Occupations −0.018∗∗∗ −0.019∗∗∗ −0.007∗ −0.040∗∗∗

(0.002) (0.003) (0.003) (0.002)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

TABLE 9.10: How a period of non-employment (dummy) affects transitions

from from from from Collapsing
Rising Stars Machine Terrain Human Terrain Occupations

To Rising Stars −0.100∗∗∗ 0.055∗∗∗ 0.009∗∗∗ 0.019∗∗∗

(0.003) (0.003) (0.002) (0.001)
To Machine Terrain 0.028∗∗∗ −0.163∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.003) (0.004) (0.002) (0.001)
To Human Terrain 0.028∗∗∗ 0.038∗∗∗ −0.124∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.003) (0.001)
To Collapsing Occupations 0.044∗∗∗ 0.070∗∗∗ 0.097∗∗∗ −0.083∗∗∗

(0.002) (0.003) (0.003) (0.002)
N 77,896 67,467 72,982 194,501
Notes: Marginal effects from multinomial logit estimations (standard errors clustered at the worker level in parentheses).

Regressions also control for high skills, gender, age, time in non-employment, tenure, permanent contract, part-time job,

firm size, knowledge intensity, region and year dummies. ∗p < 0.10 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01

Displaced workers coming from rising star occupations experience a downgrade in either the expo-
sure to the destructive or the transformative effects (or both). But other workers (e.g., in the machine
terrain or the human terrain) have a higher likelihood of finding employment in occupations with higher
exposure to the transformative effects of AI, compared to workers who return to employment less than
a year after displacement. A larger period spent searching for a job may increase the quality of employ-
ment matches and may allow workers to acquire new human capital necessary for reskilling for the jobs
of the future.

Table 9.11 and Table 9.12 summarize the main findings from our multinomial transition analysis.
For ensure robustness, we also ran our analysis on a sample where we drop the restriction of displaced
workers, looking instead at the whole economy. The results are largely unaltered.
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TABLE 9.11: Variables that positively affect transitions

from
Rising
Stars

from
Machine
Terrain

from
Human
Terrain

from
Collapsing

Occupations

to Rising Stars
college, high skills,

large firm,
knowledge intensity

college, high skills,
non-employment

college, high skills,
female, non-em-

ployment,
knowledge intensity

college, high skills,
female, non-em-

ployment

to Machine Terrain female, non-em-
ployment

college, high skills,
female, age, large

firm, knowledge in-
tensity

college, high skills,
female, non-em-

ployment,
knowledge intensity

college, high skills,
female, non-em-

ployment,
knowledge intensity

to Human Terrain age, non-employ-
ment

age, non-employ-
ment

college, age, large
firm, knowledge in-

tensity

high skills, age,
non-employment,
knowledge intensity

to Collapsing Occupations non-employment non-employment non-employment age, large firm

TABLE 9.12: Variables that negatively affect transitions

from
Rising
Stars

from
Machine
Terrain

from
Human
Terrain

from
Collapsing

Occupations

to Rising Stars female, non-em-
ployment

female, age, large
firm age, large firm age, large firm

to Machine Terrain
college, high skills,

age, large firm,
knowledge intensity

non-employment age, large firm age, large firm

to Human Terrain
college, high skills,
female, large firm,
knowledge intensity

college, high skills,
female, large firm,
knowledge intensity

high skills, non-em-
ployment college, large firm

to Collapsing Occupations
college, high skills,
female, large firm,
knowledge intensity

college, high skills,
female, age, large

firm, knowledge in-
tensity

college, female, age,
large firm,

knowledge intensity

college, high skills,
female, non-em-
ployment,
knowledge intensity

9.6 Conclusions

This chapter analyzes the implications of digitalization for labor mobility by studying worker transi-
tions among four occupational terrains distinctly exposed to digitalization as proposed by Fossen and
Sorgner (2019). Using a sample of workers displaced due to firm closure, we estimated multinomial
probability models of transitions from each of the four digitalization terrains into all four terrains, allow-
ing us to better understand how worker mobility patterns are influenced by worker, firm and industry
characteristics.

We find that having a college degree or a high level of firm specific human capital promotes moves
into the transformative field of digitalization (and especially into rising star occupations), where these
forms of human capital may find strong complementarities with artificial intelligence. We also find
evidence of path dependence, in the sense that many displaced workers tend to return to the terrain
from which they were displaced. However, individuals who spend at least one year out of employ-
ment are more likely to change their occupation drastically into a different digitalization terrain, some
perhaps taking the opportunity to search for a better match while others may have to downgrade their
employment expectations to worse jobs, namely into occupations collapsing due to high exposure to
destructive digitalization and little to no positive interactions with the transformative effects of artificial
intelligence.

These findings suggest a possible segmentation of the labor market. The segment of the highly
skilled will occupy the jobs that benefit the most from newer technologies and experiencing almost
none of the destructive effects, while a segment composed of less productive, often older, workers are
pushed into collapsing occupations or, at best, into the human terrain performing manual jobs that,
despite not yet being automated, are characterized by low wages, unstable employment interleaved
with long period of unemployment. The path dependence described above is particularly damning to
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those in the collapsing jobs, as they struggle to find employment in more protected terrains and may
find themselves in technological unemployment with an obsolete set of skills.

Future research could focus on how the effects of worker human capital (namely, education and
skills) may differ between genders, age groups, firm size and knowledge intensity. This would allow
a deeper comprehension of the role of human capital in determining transitions across occupations at
different levels of transformative and/or destructive digitalization.

Our work points to opportunities for policy to guide both the training and the retraining (for ex-
ample through formal education, short duration programs, or even on-the-job skills acquisition) of the
workforce, preparing the labor supply for the jobs of the future. At the same time, measures for the
protection of those negatively affected are needed, particularly during a transition period toward an
economy based on newer, more sophisticated knowledge, as well as during periods between jobs where
reskilling may be necessary.

9.7 Appendix

TABLE A9.1: Main occupations by digitalization terrain

Digitalization
terrain

Occupation
description ISCO-08 Workers % of

employment

Rising
Stars

Services Managers n.e.c. 1439 59,355 1.84
Managing Directors and Chief Executives 1120 46,008 1.42
Retail and Wholesale Trade Managers 1420 32,026 0.99
Office Supervisors 3341 31,516 0.98
Nursing Professionals 2221 30,798 0.95

Machine
Terrain

Sales Workers n.e.c. 5249 125,845 3.90
General Office Clerks 4110 122,489 3.79
Clerical Support Workers n.e.c. 4419 39,153 1.21
Accounting Associate Professionals 3313 22,868 0.71
Accountants 2411 21,833 0.68

Human
Terrain

Cleaners and Helpers in Offices, Hotels and Other Establishments 9112 124,936 3.87
Heavy Truck and Lorry Drivers 8332 62,818 1.95
Home-based Personal Care Workers 5322 41,840 1.30
Car, Taxi and Van Drivers 8322 26,896 0.83
Motor Vehicle Mechanics and Repairers 7231 23,721 0.73

Collapsing
Occupations

Shop Sales Assistants 5223 83,609 2.59
Waiters 5131 80,490 2.49
Stock Clerks 4321 67,249 2.08
Elementary Workers n.e.c. 9629 57,469 1.78
Bricklayers and Related Workers 7112 46,832 1.45

Other

Crop Farm Laborers 9211 15,809 0.49
Software and Applications Developers and Analysts n.e.c. 2519 12,533 0.39
Sweepers and Related Laborers 9613 8,391 0.26
Information and Communications Technology User Support Technicians 3512 7,399 0.23
Mixed Crop and Livestock Farm Laborers 9213 6,595 0.20

Notes: n.e.c. = not elsewhere classified. Percentage of employment refers to share of total employment of occupation in 2019.
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TABLE A9.2: Job (hierarchical) levels

Level Tasks Skills

8 - Top
managers

Definition of the firm general policy or
consulting on the organization of the
firm. Strategic planning. Creation or
adaptation of technical, scientific and
administrative methods or processes.

Knowledge of management and
coordination of firm’s fundamental
activities. Knowledge of management
and coordination of the fundamental
activities in the field to which the
individual is assigned and that requires
the study and research of high
responsibility and technical level
problems.

7 - Inter-
mediary
managers

Organization and adaptation of the
guidelines established by the superiors
and directly linked with the executive
work.

Technical and professional qualifications
directed to executive, research, and
management work.

6 - Super-
visors,
team
leaders,
foremen

Orientation and supervision of teams, as
directed by superiors, but requiring the
knowledge of tasks.

Complete professional qualification with
a specialization.

5 -
Higher-
qualified
profes-
sionals

Tasks requiring a high technical value
and defined in general terms by
superiors.

Complete professional qualification with
a specialization adding to theoretical and
applied knowledge.

4 -
Qualified
profes-
sionals

Complex or delicate tasks, usually not
repetitive and defined by superiors.

Complete professional qualification
implying theoretical and applied
knowledge.

3 - Semi-
qualified
profes-
sionals

Well defined tasks, mainly manual or
mechanical with low complexity, usually
routine and sometimes repetitive.

Professional qualification in a limited
field or practical and elementary
professional knowledge.

2 - Non-
qualified
profes-
sionals

Simple tasks, diverse and usually not
specified, totally determined.

Practical knowledge and easily acquired
in a short time.

1 - Ap-
prentices,
interns,
trainees

Training for a specific task Identical, but without practice, to the
professional of the qualification level
they will be assigned

Hierarchical levels as defined by Portuguese law - Decreto Lei 121/78 of July 2.

Universidad Internacional de Andalucía, 2023



197

Part IV

A model for the circular economy
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Chapter 10

The circular economy and the optimal
recycling rate: A macroeconomic approach

10.1 Introduction

The debate on the "circular economy" (CE), as a new paradigm opposite to the standard "linear econ-
omy", has emerged from the necessity to deal with dwindling natural resources and the generation of
waste through economic activity.1 This issue has also attracted rising interest among scholars, although
there is still a shortage of theoretical and empirical studies offering a better understanding of the con-
sequences of incorporating the CE into the standard linear economy as a necessary step for correctly
assessing the implications of CE driving policies. Several economies, such as the European Union (with
Germany as the leading country), Japan and China, have incorporated the CE into their environmen-
tal and economic growth policies, considering the CE as one of the pillars of sustainable development
(Geissdoerfer et al. 2017). Production and consumption activities in the economy are basically "linear",
meaning that raw natural resources are used to produce final goods, and after their use in consumption
or investment activities, waste is generated that needs to be managed. This is the so-called "take, make
and waste" or "open-loop" approach to production. The CE is regarded as an instrument to mitigate the
two main problems generated by the open-loop approach, specifically the depletion of natural resources
and environmental damage, helping to "close the open-loop".

The paradigm of CE is gaining momentum as a strategy to improve the environmental quality and
preserve natural resources. The role of natural resources in economics has regained prominence just
when evidence of a damaged environment has emerged. Andrews (2015) situates the birth of the linear
economy the "take-make-use-dispose" model of consumption in the Industrial Revolution and claims
the necessity of a new economic model, in which the CE is called to play a central role in sustainability.
Nowadays, there is an open debate among scholars on the relationship between the CE and sustainabil-
ity, the different ways to promote the CE and the crucial sectors for implementation. Hu et al. (2018)
analyze the efficiency of promoting the CE through legislation. Other authors focus on the idea of imple-
menting taxes as an instrument to promote the CE. For example, Bahn-Walkowiak et al. (2012) analyze
the effects of taxing construction materials. Pomponi and Moncaster (2017) highlight the necessity of
using CE-driving policies in those sectors that consume more raw materials. Kirchherr et al. (2018) ana-
lyze the main barriers to the CE in European countries, concluding not only that technological barriers
exist but also that the main barriers seem to be cultural: the lack of awareness among consumers and a
company culture of reluctance to engage in the CE. George et al. (2015) conclude that the only possible
way to improve the environmental quality is to increase the recycling rate as one of the pillars of the CE.
Lin (2020) points out that waste has a non-zero value as it can be recycled and new material generated
for new production/consumption activities.

In practice, economic activity (the production of consumption and investment goods) uses raw ma-
terials extracted from nature and produces a large variety of waste that could be reused for production
purposes. Various of these waste products, such as metal, e-waste, paper, glass, plastic, batteries and

1For a definition of the CE, see for instance, Kirchherr et al. (2018), Korhonen (2018, a, b), and García-Barragán et al. (2019).
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so on, can be recovered and re-manufactured. Even organic residuals can be transformed into fertil-
izers or energy generation fuel. The awareness of environmental and natural resources issues and the
elaboration of policies to embrace the idea of the CE have become fundamental in China and Europe.2

As McDowall et al. (2017) highlight, the conception of the CE differ between the two territories, being
broader in China, which includes pollution and other environmental problems in the CE perspective. By
contrast, the European focus is on waste, natural resources and opportunities for business. It is not sur-
prising that the awareness about the necessity of the CE has emerged in China where, for example, the
total amount of municipal solid waste reached 191.4 million tonnes in 2015, according to the National
Bureau of Statistics of China (2016). In Europe, according to Eurostat (2021), the generation of munici-
pal waste per capita rose to 489 kg in 2018 (municipal waste accounting for just 10% of the total waste
generation).3 Increasing the circularity of the economy is an issue that not only concerns governments,
but also private firms as a managing strategy to maximize revenues. For instance, CE-related revenues
represent around 15% of total revenues of the Philips company (Koninklijke Philips, 2019; 2020).

Data about waste generation and environmental exploitation highlight the necessity of an efficient
recycling sector, together with a culture of negative externalities reduction and input re-use.4 In this
chapter, we adopt a broad view of the concept of recycling, including several activities distinct from
producing recycled material and encompassing re-manufacturing activities and the re-usage of materi-
als as well. That is, they include the aggregate of all secondary materials whether they need a recycling
process or not. Indeed, the CE is a concept far beyond the recycling sector that to be implemented,
needs to be accepted in daily life by every single economic agent, including households, firms and gov-
ernments. The CE has become crucial for sustainable economic growth, (see Lin, 2020). All firms need
to re-use their inputs as much as they can and make it easy for their customers to return the waste
associated with the consumption of their products so that it can be re-integrated into the productive
process. Consumers have to be conscious about the necessity of reducing waste, reusing products and
recycling any waste that they produce. Finally, governments should give incentives to firms to use recy-
cled materials instead of natural resources, as well as to consumers to favor their re-using and recycling
processes. Lin (2020) studies sustainable growth from a CE perspective, highlighting the problems and
limitations of the traditional linear economy which represents an economic growth system that is un-
sustainable in the long-run. Haas et al. (2015) estimate that the CE accounted for a very small fraction
of the total economy in the year 2005, with a global 4 Gt/year (gigatonnes per year) of recycled waste
material compared with a total of 58 Gt/year of raw natural materials. This represents around 6.5% of
the total processed materials. However, we must take into account that almost half of the processed
materials are energy, and, hence, are not available for recycling. Considering biomass, the circularity of
the economy increases to 37%. These figures show that there is still considerable room to increase the
circularity of the economy based on two pillars: an increase in recycling rates and an energy transition
from fossil fuels to renewable energy sources.

Nonetheless, the CE has been neglected in standard macroeconomic analysis, which has traditionally
only consider the linear economy.5 Mainstream economics is dominated by the traditional "linear" econ-
omy, in which finite natural resources are extracted for production activities that are non-sustainable in
the long-run and the generation of waste that deteriorates the environment. This chapter contributes

2Ghisellini et al. (2016) offer a measure of the concern about the CE around the world, and China emerges as the leading
country. They review 89 case studies about the CE and then classify them by geographical location; 41 studies focus on China
and 20 on the European Union (EU), meaning that, almost 70% of the surveyed studies about the CE refer to China.

3The World Bank estimates the figure to be around 2 billion tonnes of municipal solid waste annually. The United Nations
estimates that the total solid waste in 2018 amounted to more than 10 billion tonnes.

4According to a behavioral study on consumers’ engagement in the CE, elaborated by the European Commission, con-
sumers keep things that they have owned for a long time (93%), recycle unwanted possessions (78%), and repair possessions
if they break (64%).

5See Geissdoerfer et al. (2017) and Schroeder et al. (2018) for a review of the literature about the CE, its relationship with
sustainability and the main topics studied in the literature related to the circularity issue.
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to the literature by developing a standard neoclassical Dynamic General Equilibrium (DGE) model ex-
tended by the incorporation of the CE.6 We depart from previous analyses in ecological economics or
industrial ecology, and we use the tools of traditional mainstream neoclassical economics analysis as
a prism to offer a new perspective on the CE. The chapter has a twofold purpose. First, we intend to
study the economic and environmental implications of the CE from a macroeconomic point of view.
Second, we aim to show that traditional neoclassical linear economic models can be transformed and
used to study the CE to achieve a better understanding of this issue. The model considers a production
function with raw materials as an additional input to capital and labor to produce final goods. Materi-
als are a composite of natural resources (representing the linear economy) and recycled materials (the
CE). The consumption of the final goods generates waste that can be recycled and reused in production.
Given the presence of a negative externality (waste accumulation), the model is solved considering the
socially-planned (optimal) allocation of resources. This integrated theoretical framework can be viewed
as a representation of the evolution from a traditional linear economy to an economy in which the CE
contributes to closing the open-loop of the former.

Consistent with the empirical evidence, quantitative simulations of the model reveal that, in the
steady state, the optimal recycling rate representing the degree of circularity of the economy has a posi-
tive relationship with economic development. Furthermore, increasing the circularity of the economy is
a necessary condition to increase social welfare in a growing economy. As output and consumption in-
crease, more waste is generated, fostering the optimality of recycling activities. We find the existence of
a steady-state hump-shaped relationship between the output and the stock of waste, which can be inter-
preted as the existence of an Environmental Kuznets Curve (EKC) in the presence of the CE. This EKC
does not appear in the case of a linear economy, in which the relationship between the output and the
stock of waste is always positive. This result shows the importance of the CE as a necessary transforma-
tion of the traditional economy to make economic growth compatible with environment preservation.
The optimal social recycling rate positively depends on the damage of the stock of waste to households’
utility and on the waste content of the final consumption goods. Among the potential policies to pro-
mote the CE, increasing the cost of natural resources or reducing the cost of recycled materials, we find
that only the later contributes to increasing the circularity of the economy. As expected, a permanent
positive technological shock reducing the cost of recycling increases recycling activities and output and
reduces the stock of pollution. By contrast, simulation results from a permanent negative technological
shock, increasing the cost of natural resources, are counterintuitive as this shock reduces the recycling
rate and economic activity, and hence, does not contribute to the expansion of the CE.

The rest of the chapter is structured as follows. Section 2 elaborates an integrated macroeconomic
model in which both linear and circular economies are present. Section 3 calibrates the parameters of
the model and calculates the steady state of the economy. Section 4 presents some simulation results
from the model and a sensitivity analysis of the key parameters. Section 5 offers a discussion of the
results and their link with the results presented in the ecological economic literature and summarizes
the main conclusions.

10.2 A macroeconomic model for the circular economy

The traditional macroeconomic modeling approach relies on the study of a "linear economy", in which
inputs are used to produce a final output and some negative externalities, such as waste and pollution,
are generated during the production process. Standard environmental macroeconomic models usually
consider raw materials as an additional input to physical capital and labor, but they constitute a model
representation of a linear economy, in which raw materials are used and waste is generated without any
re-use. Materials are natural resources that can be either non-renewable or renewable. In a standard

6The standard neoclassical DGE model for a linear economy is introduced by Ramsey (1928) and later further developed
by Cass (1965) and Koopmans (1965). Dasgupta and Heal (1974) developed a linear economy DGE model extended with the
inclusion of natural resources. For a review of CE modeling approaches, see McCarthy et al. (2018).
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linear economy, natural resources are transformed and used in production activities, and they finish
as waste once the final good produced has been consumed or invested. Two key problems arise in a
linear economy. First, natural non-renewable resources are depleted. Second, even when resources are
renewable, a waste generation problem exists. However, the materials used in the production process,
along with the existing technology, enable the recovery of a fraction of the total waste as well as its
transformation into new materials. This is the case of the CE, in which waste products re-enter the
production activities and, once the final goods have been consumed, are transformed again into waste,
and so on. The macroeconomic model developed here encompasses the two fundamental aspects of the
CE: it limits the harmful effects of the economic activity on the environment by reducing the stock of
waste, and it mitigates the depletion of natural resources.

This section develops a CE model embedded in a standard neoclassical growth model for a linear
economy. Waste is assumed to be generated by the consumption of final goods. Waste that is not recy-
cled is accumulated into a stock of waste that negatively affects households’ utility. The accumulation
of waste can be reduced by increasing the recycling rate of waste (transforming waste into resources
that can be used again in production activities). Our modeling strategy considers a view in which
the CE refers to a wider set of activities leading to the re-use of materials in the economy (recycling,
re-manufacturing, reusing, repairing, sharing, etc.). Given the existence of a negative externality, we
consider a centralized economy in which a central planner maximizes social welfare to study the con-
ditions for the first-best equilibrium. Given the presence of a negative externality, the planner solution
will not be a decentralized equilibrium.

10.2.1 Households

We consider an economy populated by an infinitely-lived representative household with preferences
regarding consumption, leisure and environmental quality. The instantaneous utility function is defined
as:

U(Ct, Lt, Zt) = ln Ct − θ
L

1+ 1
ρ

t

1 + 1
ρ

− ϕZχ
t (10.1)

where Ct is the consumption of goods and services, Lt is the labor and Zt is the level of pollution gener-
ated by waste residuals from consumption activities that are assumed to be equal to the stock of waste.
The parameter θ > 0 represents the willingness to work, and ρ is the Frisch intertemporal elasticity of the
labor supply representing the change in worked hours in response to a change in the equilibrium wage,
given a constant marginal utility of wealth. Waste is considered to be a negative externality, reducing
households utility function. The disutility produced by the accumulated waste stock is measured by
the parameter ϕ. We assume that UZ < 0 and UZZ < 0, indicating that, as waste is accumulated, its
cost, in terms of utility, increases. The parameter χ > 1 represents the elasticity of utility with respect to
pollution.7

The resource constraint of this centralized economy is given by:

Ct + It + ΘnNt + ΘvVt = Yt (10.2)

7The model has been solved for alternative specifications of the households’ utility function to check the robustness of the
results to the particular specification of the utility function. First, we simplify expression (1) eliminating leisure (labor supply).
We find that the optimal labor supply decision does not affect the results. Second, we use an alternative specification for the
household’s utility function given by,

U(Ct, Zt) = ln Ct + θ ln(H − Zt)

where the constant H represents the initial endowment of environmental quality. As the stock of waste increases, the en-
vironmental quality declines and reduces utility. Again, we find that the results only change slightly using this alternative
specification and, hence, the conclusions remain the same.
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where It is investment, Nt represents natural resources8, Vt denotes recycled materials, and Yt is final
output. Θn and Θv are technological parameters reflecting the real cost of natural and recycled material,
respectively, which are assumed to be exogenously given. This resource constraint encompasses both
the linear economy, in which natural extracted resources are used in production activities, and the circu-
lar economy, in which instead of new natural resources, recycled materials are used for production. The
amount of recycled material depends on the recycling rate, whereas the amount of natural resources
depends on the extraction rate.

We assume the following accumulation process for physical capital, Kt:

Kt+1 = (1 − δk)Kt + It (10.3)

where δk (0 < δk < 1) is the physical capital depreciation rate.

10.2.2 Waste and recycling

The model considers the existence of a negative externality in the form of waste. We assume that waste
is generated by the consumption of final goods.9 Waste generated by consumption, Xt, is defined by the
following function:

Xt = X(Ct) = ηCγ
t (10.4)

where γ is the elasticity of Xt with respect to consumption10, and η is the proportion of waste as a by-
product of consumption. This parameter indicates the fraction of consumption that is transformed into
waste (waste content per consumption unit). A prototype model for natural resources, but without the
generation of waste, is provided by Dasgupta and Heal (1974).

We assume the following accumulation process for waste:

Zt+1 = (1 − δz)Zt + (1 − µt)Xt (10.5)

where Zt is the stock of waste, δz is the decay rate of waste, and 0 < µt < 1 is the recycling rate. It is
assumed that the cost of recycling is a constant and independent of the recycling rate. Furthermore, it is
assumed that all kinds of waste can be recycled.11 Therefore, recycled materials are produced according
to:

Vt = µtXt (10.6)

8The flow of natural material used in production, Nt, comes from the extraction of natural resources and the modeling
strategy is close to that of André and Cerdá (2006). However, since we assume that natural resources can be both renewable
and non-renewable and therefore that there is room for regeneration, we omit the modeling of this process so that our model
focuses on circularity. In this sense, the fraction of income expended on both natural and recycled material is a function of the
technological parameters Θn and Θv, which reflect all the real cost of natural and recycled material used in production.

9Alternatively, we can assume that waste is generated by consumption, investment, production activities or all of them.
Nevertheless, the results presented in this chapter remain unchanged for these different modeling strategies.

10In the calibration of the parameters of the model (see next section) we assume that γ = 1.
11Alternatively, the waste accumulation law of motion can be defined as,

Zt+1 = (1 − δz − µt)Zt + Xt

where the recycling rate represent the fraction of the stock of waste recovered each period. In this case, the recycling rate of the
economy is not defined as the percentage of the current flow of waste recovered, but the percentage over the stock of waste.
This alternative specification allows recycling not only waste of the present but also waste of the past. Nevertheless, both
specifications produce similar results. Additionally, it is assumed that all kinds of waste can be recycled. However, it could be
the case that not all kinds of waste are recyclable. This case could be considered by simply defining equation (6) in the text as,

Vt = µtψXt

where 0 < ψ ≤ 1, represents the fraction of waste recyclable. To keep the model as simple as possible we assume that ψ = 1.
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In a linear economy, the recycling rate is equal to zero (µt = 0), and hence, also Vt = 0. In this
scenario, waste is accumulated over time depending on the relationship between the waste decay rate
and the newly generated waste. On the other hand, if µt = 1, the stock of waste is zero, and no negative
externality exists as the flow of waste disappears instantaneously.

10.2.3 Production function

We use a standard Cobb-Douglas production function with three inputs: physical capital, labor and raw
materials. This technology is given by:12

Yt = AtK
α1
t Mα2

t L1−α1−α2
t (10.7)

where Yt is the aggregate output, At is a measure of total factor productivity (TFP), Lt collects labor
services, Kt represents physical capital and Mt denotes the raw materials. α1 represents the elasticity
of output with respect to capital and α2 is the elasticity of output with respect to raw materials. Mate-
rials used in production match an Armington aggregator of both virgin natural resources and recycled
materials:

Mt =

[
ωN

σ−1
σ

t + (1 − ω)V
σ−1

σ
t

] σ
σ−1

(10.8)

where ω is a distribution parameter and σ is the elasticity of substitution between natural resources and
recycled material.13 The degree of substitution between natural and recycled materials is not perfect.
García-Barragán et al. (2019) assume that natural and recycled materials are not perfect substitutes
between the quality losses of recycled material in subsequent recycling rounds. We do not consider
that possibility, which would require a change in the recycling technology, and we simply assume that
imperfect substitution applies equally to both types of material.

As it can be observed, the CE enters the aggregate production function in the form of materials along
with the standard linear economy. The distribution parameter 1− ω indicates the weight of the CE with
respect to the linear economy. If ω = 1, it means that the economy is fully linear, so all raw materials
come directly from natural resources and all waste generated by consumption is accumulated into the
existing stock of waste. For any value of ω < 1, the CE comes into play, and a fraction of waste is
transformed into recycled materials that can be used for production purposes. Hence, the circular part
of the economy implies the existence of a material loop that contributes to a cleaner environment. Once
raw materials are used in production activities, the consumption of the final goods generates waste that
can be converted into new materials again and re-used for production activities.14

10.2.4 Central planner’s welfare maximization problem

Given the existence of a negative externality, we consider the case of a planning problem, in which we
assume the existence of a central planner who maximizes social welfare by choosing optimal values for
the consumption, labor, capital stock, stock of waste and recycling rate. The central planner solves the

12This production function implies that the elasticity of substitution between inputs is unitary. Alternatively, we can assume
a CES production function in which inputs are gross complements. However, the implications for the CE are similar, therefore,
we decide to present the simplest specification.

13Solow and Wan (1976) investigate how the use of an exhaustible resource affects the production function and the shadow
price of optimal extraction, concluding that relatively large variations in the availability of resources generate very small
changes in the sustainable level of consumption.

14The idea of the CE is close to the carbon capture and sequestration technologies in environmental economics. Once waste
or emissions are produced, some technologies can be used to mitigate the stock of pollution. They can also be reused to capture
CO2 for energy generation. The recycling of waste from consumption activities is based on a similar principle and implies that
a fraction of the stock of waste is removed and re-used for production activities.
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following problem,

max
{Ct,Lt,Kt+1,µt,Zt+1}

∞

∑
t=0

βt

ln Ct − θ
L

1+ 1
ρ

t

1 + 1
ρ

− ϕZχ
t

 (10.9)

subject to the restriction given by (10.2), (10.3), (10.4), (10.5), (10.6), (10.7) and (10.8).15 The full resolu-
tion of the central planner’s maximization problem and the corresponding first-order conditions can be
found in the technical appendix. From the first-order conditions, we find that the equilibrium condition
for the optimal quantity of natural resources is given by:

Θn M
σ−1

σ
t = α2ωYtN

−1
σ

t (10.10)

The optimal investment decision is given by:

Yt+1L
1
ρ+1
t

YtL
1
ρ+1
t+1

= β

[
(1 − δk) + α1

Yt+1

Kt+1

]
(10.11)

Finally, the equilibrium condition for the optimal quantity of recycled material, indicating the opti-
mal circularity of the economy, is given by:

βt+1ϕχZχ−1
t+1 =

βtθL
1
ρ+1
t

(1 − α1 − α2)Yt

Θv − α2(1 − ω)
YtV

−1
σ

t

M
σ

σ−1
t

−

βt+1θL
1
ρ+1
t+1

(1 − α1 − α2)Yt+1

Θv − α2(1 − ω)
Yt+1V

−1
σ

t+1

M
σ−1

σ
t+1

 (1 − δz) (10.12)

Equilibrium conditions (10), (11) and (12) differ in several aspects from the equilibrium conditions
resulting from the standard linear economy model. Expression (10) indicates that the optimal quantity
of raw materials used in production activities is determined by the condition that equals the marginal
productivity of natural material to the unit cost of raw material. Expression (11) represents the condi-
tion that equals the marginal value of consumption with the marginal value of investment, that is, the
optimal consumption-saving decision. However, this equilibrium condition differs from the standard
one in the fact that the intertemporal consumption marginal utility ratio is replaced by a combination of
labor and output because of the introduction of the CE and that consumption generates waste. Indeed,
expression (11) can be written as (see technical appendix),

Ct+1 + γXt+1

[
Θv − α2(1 − ω)

Yt+1V− 1
σ

t+1

M
σ−1

σ
t+1

]

Ct + γXt

[
Θv − α2(1 − ω)

YtV
− 1

σ
t

M
σ−1

σ
t

] = β

[
1 − δk + α1

Yt+1

Kt+1

]
(10.13)

which includes the intertemporal consumption ratio as in the linear economy model, plus a new term
reflecting the fact that consumption produces waste and that the circular side of the economy transforms
part of waste into recycled material reused again for production. Notice that the above equilibrium con-
dition is equal to the standard optimal consumption path in the canonical linear economy model when
waste produced from consumption is not considered Xt = 0. In our model, the optimal consumption

15This is the common solution approach adopted in the literature for solving environmental-economics models (see, for
instance, Acemoglu et al. 2012; Acemoglu et al. 2016; Golosov et al. 2014). Given the presence of a negative externality,
the planner solution will not be a decentralized equilibrium. The central planning outcome only coincides with a dynamic
competitive market equilibrium in the absence of relevant distortions (Hassler and Krusell, 2018).
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path is also affected by waste and the recycling rate reflected by the amount of recycled material. Fi-
nally, expression (12) represents the condition that equals the welfare cost of waste in terms of losses
in household’s utility with the difference between the marginal productivity and the cost of recycled
material.

10.3 Calibration and steady state

This section presents the calibration of the parameters of the model. Since the model is composed of
macroeconomic parameters and parameters related to recycling activities, we use different sources for
this calibration. Macroeconomic parameters are calibrated from the real business cycle (RBC) literature,
while parameters related to the waste generation process and recycling activities are obtained from
different statistical sources and previous research. For some key parameters, we carry out a sensitivity
analysis and simulate the model using a range of values given their uncertainty.

On the one hand, some of the parameters of the model are standard in macroeconomics. Therefore,
we calibrate them by employing the standard values used in the literature. We set the intertemporal
discount factor, β, to 0.97. The Frisch elasticity of labor, ρ, is fixed at 0.72. Given the value for labor
elasticity, the willingness to work parameter, θ, is calibrated at 15.6 to produce a labor steady state value
of 0.33. The capital depreciation rate, δk, is fixed at 0.07. The output-capital elasticity, α1, is fixed at 0.3
and the output-labor elasticity, 1 − α1 − α2, at 0.65. Given the assumption of constant returns to scale,
these figures result in an output-material elasticity of 0.05.

On the other hand, the model includes parameters related to the waste generation process and re-
cycling activities. The values of these parameters are not yet documented in the literature. We set the
waste elasticity to consumption, γ = 1, assuming that every consumption unit involves an associated
proportional waste product. The parameter η collects the share of waste in consumption. This param-
eter indicates the percentage of the waste remaining from each consumption unit, that is, the waste
content in consumption goods. According to Eurostat (2021), each inhabitant of the EU uses 16 tonnes
of materials per year, 6 tonnes of which become waste. Thus, we can establish a relationship between
consumption and waste in the model by setting η to 6/16=0.375 and γ to 1. We calibrate σ = 1.5 to
reflect the relationship of substitution between natural resources and recycled materials, both being far
from perfect substitute inputs. In accordance with the Eurostat data, we set ω = 0.95, so the share of
circular materials is 11.7%, matching the circularity rate of the EU-27 countries.16 The waste damage
parameter to the utility function, ϕ, is calibrated as 0.5. The pollution damage to welfare is assumed
to be a power function of the stock of pollution. Hence, the pollution elasticity parameter, χ, is fixed
at 2. The values of these two parameters must adequately define the fraction of waste accumulation
that ends up being harmful to household’s welfare (representing a variety of factors, including negative
effects on health, climate change, visual effects of landfills, garbage smells, etc.). To assign these values
correctly, first, we explore all the possible paths along which residue can travel once it is produced. On
the one hand, this waste can be recycled or reused, entering the CE system, and we assume that it would
not cause any damage to the utility. Notice that the waste that follows the CE path is not collected in
the variable representing the stock of waste. On the other hand, we have the waste that is not recy-
cled or reused, which is accumulated in Z. This non-recycled or non-reused waste can follow different
routes to landfill or incineration. In the EU, in 2018, more than half (54.6%) of the waste was treated in
recovery operations: recycling (37.9% of the total treated waste), backfilling (10.7%) or energy recovery

16We must bear in mind that these data can significantly vary among countries. For example, the estimated circularity rate
in France is 18.6% while it is only 1.6% in Ireland. Furthermore, it is assumed that parameters for the centralized economy are
equal to those of the decentralized economy.
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(6.0%). The remaining 45.4% was either landfilled (38.4%), incinerated without energy recovery (0.7%)
or disposed of otherwise (6.3%).17

Having highlighted what waste treatment data looks like, we can explore what the empirical evi-
dence shows about how the different methods of waste treatment can affect human health (and, there-
fore, utility). It is very difficult to establish exactly the relative importance of consumption levels and
health status for a representative individual. Just as we assume that higher levels of consumption re-
sult in greater utility, we also assume that greater risk to health results in lower utility. Establishing a
comparison with the work of Tomita et al. (2020), we can say that, if an individual can choose between
being closer to or further away from a waste deposit, he will always choose to be as far away as pos-
sible. Tomita et al. (2020) find that residing within 5 km of a waste site in South Africa is significantly
associated with asthma, tuberculosis, diabetes and depression.

We can also establish a comparison with macroeconomic models that take air pollution into account,
since this type of pollution is more established in the literature as a negative externality and we can find
several models describing it in that way. This relationship is direct when we highlight, for example,
that waste incineration may result in emissions of air pollutants. Tait et al. (2015) conduct a systematic
review of the health impacts of waste incineration in which a range of adverse health effects is iden-
tified, including significant associations with some neoplasia, congenital anomalies, infant deaths and
miscarriage.

TABLE 10.1: Baseline calibration of the parameters

Parameter Definition Value
Preferences β Discount factor 0.97

θ Labor weight 15.60
ρ Frisch elasticity parameter 0.72

Technology α1 Output-capital elasticity 0.30
α2 Output-material elasticity 0.05
δk Physical capital depreciation rate 0.07
A Total factor productivity 1.00
Θn Natural resource technology 1.00
Θv Recycled material technology 1.00

Waste γ Waste-consumption elasticity 1.00
ϕ Waste damage parameter 0.50
χ Pollution elasticity parameter 2.00

Circular Economy ω Natural resource share 0.95
σ Elasticity sources substitution 1.50
η Share of recyclable consumption waste 0.375
δz Waste stock decay rate 0.025

As we acknowledge that the calibration of these parameters can be subjective because there are not
yet any solid data or empirical evidence about this, we present our results for different values to show
how the calibration of these parameters can affect the final results. Finally, we assume an annual pol-
lution stock decay rate, δz, of 2.5%. This corresponds to a life expectancy of 72 years. The degradation

17It is also important to pay attention to the different types of waste that are produced. In particular,4.4 % of waste produced
in the EU during 2018 (101.7 million tonnes) was classified as hazardous waste. According to Eurostat, in 2018, 45.1% of
the hazardous waste treated in the EU was recovered: 37.5% by recycling or backfilling and 7.6% by energy recovery. The
remaining 54.9% was incinerated without energy recovery (5.7%), landfilled, in other words deposited into land or through
land treatment and released into water bodies (32.8%), or disposed of in another way (16.2%).
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time depends on the waste material, ranging from 3 months for paper tissues, napkins or an apple core
to 1-2 years for a cigarette end, 10-100 years for an aluminum can for drinks, 100-1000 years for plastic
and more than 10,000 years for polystyrene (US Department of Commerce). Finally, technological com-
ponents are assumed to be exogenously given and are normalized to one. A summary of the benchmark
calibrated parameters of the model is presented in Table 10.1.

10.3.1 Steady State

For readers’ convenience, we report here the system of equilibrium equations in the steady state used
to simulate the model.

Y = AKα1 Mα2 L1−α1−α2 (10.14)

M =
[
ωN

σ−1
σ + (1 − ω)V

σ−1
σ

] σ
σ−1

(10.15)

I = δK (10.16)

C = Y − I − ΘnN − ΘvV (10.17)

X = ηCγ (10.18)

µ =
V
X

(10.19)

Z =
(1 − µ)X

δz
(10.20)

L =


(

1
C − ϕχZχ−1

δz
ηγCγ−1

)
(1 − α1 − α2)Y

θ


ρ

1+ρ

(10.21)

K =
α1Y

1
β − 1 + δ

(10.22)

N =

(
α2ωY

Θn M
σ−1

σ

)σ

(10.23)

V =

 α2 (1 − ω)Y(
Θv − ϕχZχ−1(1−α1−α2)Y

θL
1
ρ +1

δz

)
M

σ−1
σ


σ

(10.24)

where we drop the time subscripts of variables to denote steady state values. The system of equations
(10.14)-(10.24) contains 11 equations for 11 unknowns, (C, I, L, K, Y, M, N, V, X, Z, µ). The above system
of steady state equations is numerically solved using a Newton-type algorithm.18

10.4 Results

Using the calibrated model, three simulation exercises are performed. First, we study the steady state
relationship among the key variables of the model economy for a range of values of aggregate produc-
tivity. Second, we carry out a sensitivity analysis of the key parameters related to the CE. Finally, we
simulate the effects of a permanent technological shock to each type of material.

18The codes are written in Matlab and are available from the authors on request.
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10.4.1 Optimal recycling rate and output

First, we study the determinants of the optimal recycling rate and the factors driving the circularity of
the economy. In our theoretical framework, the recycling rate is determined endogenously, resulting
from the maximization of social welfare once the social cost of the accumulation of waste has been
internalized. This optimal recycling rate in the centralized economy would be equivalent to the target
recycling rate of policies promoting the CE in a market economy. Once the waste has been produced, the
recycling rate determines the fraction of waste that is transformed into recycled material to be used again
in production activities, while the remaining fraction is accumulated to the previous stock of waste.
Empirical evidence (OECD, 2020) suggests that recycling rates are higher in developed economies than
in developing economies, indicating that economic growth can also be a factor fostering the circularity
of the economy. We test this empirical evidence by calculating steady states of the model economy for
a range of values of total factor productivity (TFP). In particular, we simulate the model for a range of
values for TFP, from 0.2 to 1.8. The baseline calibration of the model is fixed at a value for TFP of 1,
which corresponds to a steady state output of 0.390.

Figure 10.1 plots the relationship between the steady-state output and the corresponding optimal
recycling rate, stock of waste, and quantities for natural and recycled material. We start by studying
the relationship between the optimal recycling rate and the level of output. The relationship between
the output and the recycling rate is found to be always positive, indicating that the higher the level of
output, the higher the optimal recycling rate. This steady-state relationship is obtained for alternative
specifications of households’ utility function. The function has an S-shaped form, reflecting that, once
a certain level of output is reached, the transition from low to high recycling rates accelerates. When
the output is high enough and the recycling rate is close to unity, further increases in output augment
the recycling rate marginally. This result indicates that, as countries increase their output, the recycling
rate that maximizes social welfare also increases and, therefore, a propensity to adopt a CE appears.
Indeed, as the output grows, the waste generation increases along with the threat to the environment.
Therefore, we should expect the recycling rate to be higher in developed countries than in developing
countries given the greater environmental damage, with a general trend in increasing recycling activities
and promoting the CE. Summing up, the model predicts a pattern of increasing circularity, as the only
alternative to maximize social welfare in a growing economy to reduce the harmful effects caused by
the linear economy.

Next, we study the relationship between the stock of waste and the output. Two opposite forces
driving the relationship between these two variables emerge in the presence of the CE. On the one
hand, as the output increases, the quantity of waste generated by consumption activities also increases,
raising the stock of waste. On the other hand, as the output increases, the optimal recycling rate also
increases, reducing the velocity of waste accumulation. In this context, the accumulation of waste crit-
ically depends on the circularity of the economy. We find the existence of a steady-state hump-shaped
relationship between the output and the stock of waste, which can be interpreted as the existence of an
Environmental Kuznets Curve (EKC) in the presence of the CE. This EKC does not appear in the case of a
linear economy, in which the relationship between the output and the stock of waste is always positive.
This result shows the importance of the CE as a necessary transformation of the traditional economy
to make economic growth compatible with environment preservation. Bongers (2020) finds the exis-
tence of an EKC relationship between output and pollution when fossil fuel and renewable energy are
considered as alternative energy sources, and a consequence of energy transition. In this theoretical
framework, as the output increases, more renewable energy is used in production activities, thus re-
ducing emissions. The mechanism from the CE found here is similar but operates through recycled
material.

Finally, we find that, as the output increases, the quantity of both natural and recycled material also
increases. Nevertheless, the growth in the use of recycled material is higher than that of natural material,
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FIGURE 10.1: Steady state values as a function of output.

increasing the circularity of the economy. Although recycling activities increase the available quantity of
material other than natural resources for production activities, economic growth increases the total de-
mand for material, including both recycled and natural resources, notwithstanding the lower material
intensity (the number of raw materials per unit of output) of the production process given the constant
returns to scale technology. This implies that the CE can partially mitigate the problems provoked by
the linear economy but cannot totally close the open-loop when the output grows. The increasing circu-
larity of the economy does not completely eliminate the pressure on natural non-renewable resources,
although it is a qualified solution to the problem of waste accumulation. From this point of view, circu-
larity is the only way to mitigate waste accumulation in a growing economy and, therefore, a necessary
but not sufficient condition for sustainable growth in an environment with finite non-renewable natural
resources.

10.4.2 Sensitivity analysis

The results presented in the previous section were obtained by simulating the model using the bench-
mark calibration of the parameters (Table 10.1). However, little information is available for calibrating
the parameters related to the CE, and we used ad hoc parameters with plausible values for the bench-
mark calibration. To check the robustness of the previous results, we carry out a sensitivity analysis
by varying these parameters. In particular, the model has three key parameters for the CE: the waste
damage to households’ utility, ϕ, the waste content of consumption goods, η, and the elasticity of sub-
stitution between natural and recycled material, σ. For this sensitivity analysis, we solve the model by
calculating steady states for a range of values of these three parameters. We use a range of values for the
waste damage parameter from 0.15 to 1 (baseline value of 0.25). For the waste content of consumption,
representing the fraction of consumption that transforms into waste, the selected range of values is from
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FIGURE 10.2: Sensitivity analysis: Steady state values as a function of the waste damage
parameter.

0.1 to 0.5 (baseline value of 0.1). Finally, for the elasticity of substitution between natural and recycled
material we choose a range of values from 1.01 to 10 (baseline value of 1.5).

Figure 10.2 plots the relationship between the recycling rate and the stock of waste as a function
of the waste damage parameter. The waste damage parameter represents the cost, in terms of forgone
utility, of the negative externality resulting from waste accumulation. As expected, as the waste damage
parameter increases, the optimal recycling rate increases to compensate for the damage to households’
welfare. The waste damage parameter to households’ utility can be interpreted both as a negative ex-
ternality to welfare and as reflecting concerns about the environment and the exploitation of natural
resources. By contrast, the stock of waste has a negative relationship with the waste damage to house-
holds’ welfare. This negative relationship is only possible in a circular economy, which implies that in
the case of a linear economy as the waste damage parameter increases welfare declines without a strat-
egy for waste stock abatement. As expected, as the waste damage parameter increases, the investment,
capital stock and output increase. On the other hand, variables related to circularity (recycled material
and recycling rate) are positively affected when the waste damage parameter increases.

A similar sensitivity exercise is carried out with respect to the parameter representing the waste con-
tent in consumption goods. Consumption goods differ in the waste that they generate. Furthermore, the
waste content of consumption goods has been increasing over time. The use of plastic, glass, electronic
components, batteries and so on, spreads at the same rate that the variety of consumption goods grows.
The model predicts the existence of a steady-state positive relationship between the waste content in
consumption goods and the optimal recycling rate. For an initial low value of waste content, the stock
of waste is higher, in spite of a rising recycling rate. This result has different interpretations. On the
one hand, it indicates that reducing the waste content of consumption goods would reduce the stock of
waste, even with a low recycling rate. Therefore, a strategy should be to managing consumption goods
disregarding, as much as possible, elements that, after consumption, become waste. This is the case
of plastic (i.e., plastic wrap can be reduced), paper, etc. On the other hand, once the waste content of
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FIGURE 10.3: Sensitivity analysis: Steady state values as a function of the waste content in
consumption parameter.

consumption goods reaches a threshold, the stock of waste remains almost constant as the recycling rate
is high enough. This occurs when the fraction of waste content is above 10%, and the recycling rate is
above 60%. This second interpretation means that the waste content in consumption goods should not
be a problem once a high enough recycling rate is reached. On the other hand, as the waste content in
consumption increases, the stock of waste also increases.

Finally, Figure 10.4 plots the results of a sensitivity analysis for the elasticity of substitution between
natural and recycled material. Little change can be observed in the steady-state values when the elas-
ticity of substitution is changed. Therefore, we conclude that the results obtained from the benchmark
calibration of the model are not sensitive to the calibrated value for this parameter, and that they do not
depend on the ease of substitution of natural with recycled material.

10.4.3 Technological change

Finally, we simulate a permanent change in the technology for material. In particular, we carry out two
experiments: first, a permanent improvement in the technology for recycling material, which represents
a permanent decline in the cost of recycling (a decline in the amount of output required per unit of
recycled material), and second, a permanent deterioration in the technology for natural material, rep-
resenting a permanent increase in the cost of natural material. It might be logical to think that both a
decrease in the cost of recycled products and an increase in the cost of natural materials would boost
the CE. However, we find that an increase in the cost of natural materials not only does not boost the
CE but can even slightly slow it down.

The main results from these simulation exercises are shown in Figures 10.5 and 10.6. Figure 10.5 plots
the transition dynamics from the initial steady state to the final steady state resulting from a permanent
improvement in the technology for recycling material. The figure shows the transition path from the
initial to the new (final) steady state, calculated as deviations from the initial steady state. This is done
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FIGURE 10.4: Sensitivity analysis: Steady state values as a function of the elasticity of
substitution between natural and recycled material.

0 20 40 60 80 100

Periods

0

1

2

3

4

5

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

10
-3 Output

0 20 40 60 80 100

Periods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

Recycling rate

0 20 40 60 80 100

Periods

-6

-5

-4

-3

-2

-1

0

1

2

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

10
-3 Waste

0 20 40 60 80 100

Periods

-0.05

-0.04

-0.03

-0.02

-0.01

0

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

Stock of Waste

0 20 40 60 80 100

Periods

-5

0

5

10

15

20

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

10
-4 Natural material

0 20 40 60 80 100

Periods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

%
 d

e
v
ia

ti
o

n
 t

o
 s

te
a

d
y
 s

ta
te

Recycled material

FIGURE 10.5: Technological change in recycling material: A permanent decline in Θv. Tran-
sition path to the new steady state as percentage deviation to the initial steady state.
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FIGURE 10.6: Technological change in recycling material: A permanent increase in Θn.
Transition path to the new steady state as percentage deviation to the initial steady state.

by computing the perfect-foresight approximate solution of the non-linear model using the Klein (2000)
solution method see the technical appendix. We simulate a 5% decline in the parameter Θv. The exis-
tence of an "overshooting" effect is observed for most of the variables as they increase on the impact,
but later they adjust to the new steady state. The long-run effect on the output is positive, as expected.
Indeed, the initial overshooting effect is explained by the fact that the increase in output leads to a rise,
in the long-run, in the utilization of more natural resources. Natural resources decrease in impact as
their cost relative to recycled material increases. However, the expansion of economic activity resulting
from the shock leads to a greater demand for both recycled and natural material. Summing-up, the
shock has positive effects on the CE side of the economy. As observed in Figure 10.5, both the recycling
ratio and the use of recycled materials in production increase, while the stock of waste decreases. The
generation of waste also declines in the impact, as the shock changes the optimal consumption/saving
decision, increasing investment. However, after the initial decline, more waste is generated as con-
sumption increases.19 As recycled materials become less costly, a substitution effect of primary natural
materials to recycled material in production activities is expected. However, there is also an income
effect as reducing the cost of recycling increases the economic activity, expanding the demand for raw
materials. Simulations show that, in the long-run, the income effect is larger than the substitution effect
and, hence, the use of policies for expanding the CE does not guarantee a decay in the depletion rate of
virgin natural resources.

Second, we study the case of a deterioration of technology (an increase in the cost) for natural re-
sources. Figure 10.6 plots the transition dynamics from the initial steady state to the final steady state
resulting from a permanent deterioration in the technology of natural material. We simulate a 5% in-
crease in the parameter Θn. This shock has a negative effect on the output as the cost of using natural

19These results prove that, in principle, any policy designed to reduce the cost of recycling will have positive effects on
the level of circularity of the economy and on social welfare. These results can be related to some extent with the case of a
subsidy for recycling activities, although the use of taxes/subsidies provokes other effects on the economy not considered in
our model. Kirchherr et al. (2018) take, as an example of this kind of intervention, the proposal of reducing the value-added
tax (VAT) from 19% to 7% for any reparations as a measure to make reparations more attractive in Germany. This proposal
was launched by Alliance 90/The Greens, a German environmental party.

Universidad Internacional de Andalucía, 2023



10.5. Discussion and conclusions 215

material becomes higher, reducing the demand for raw material. However, we find that any policy
increasing the cost of natural resources does not have positive effects on the circular economy but the
opposite, increasing the deterioration of the environment. Indeed, the shock reduces the optimal recy-
cling rate, increasing the stock of waste. It is true, that this shock reduces consumption and hence, the
generation of waste. However, the decline in the recycling rate demonstrates that shocks that increase
the cost of natural material do not help the circularity of the economy.

The economic intuition behind this counterintuitive result is the following. As we notice, the higher
cost of natural resources increases production cost. As a consequence, output declines in the new steady
state, resulting in a negative income effect. This negative income effect is larger than the substitution ef-
fect of natural resources by recycled material, resulting in a lower demand of both natural resources and
recycled material compared to the initial steady state. The lower demand of recycled material decreases
the recycling rate more than the observed decline in waste, leading to an increase in the accumulation
of waste.

10.5 Discussion and conclusions

This chapter studies the optimal recycling rate in an economy with linear and circular production tech-
nologies from a macroeconomic perspective using standard tools in mainstream economics. The CE has
traditionally been neglected in the construction of macroeconomic models, including those models that
integrate environmental pollution and natural resource issues. This chapter fills this gap and incorpo-
rates the CE into an otherwise standard neoclassical optimal growth model. The CE enters the model
in two different ways: mitigating the negative externality arising from waste accumulation, which has
a negative impact on households’ utility, and as an input-augmenting technology. We define a three-
input production technology: capital, labor, and raw materials. Raw materials can be generated by the
extraction of natural resources or by recovering and recycling waste. The first case represents a linear
economy, whereas the second is representative of a CE. In our model, the two economies coexist, the
aim of our research being to build a theoretical framework in which both the linear and the circular
economy are present and interact with each other. The integration of the CE into an otherwise standard
traditional linear economy model proves to be fruitful and leads to a number of interesting results about
the implications of the CE in terms of social welfare, economic activity and the environment. Moreover,
it is useful to identify proper policies to encourage the development of the CE and the relationship be-
tween the CE and economic growth. The analysis performed in the previous sections allows a direct
comparison between the CE and the standard linear economy using the tools of mainstream economics.
This integrated theoretical framework provides a number of insights.

First, we identify a positive relationship between the circularity of the economy and economic de-
velopment, measured by output. This result indicates that the CE will expand as the level of output in-
creases, as growing economies require the expansion of the CE as a necessary condition to turn economic
growth into social welfare gains and to mitigate environmental deterioration (see Schroeder, Anggraeni
and Weber, 2018). The model indicates that welfare maximization requires an increase in the circularity
of the economy when the output is expanding. Otherwise, an increase in the output does not guaran-
tee improved social welfare as the linear economy causes the environment to deteriorate. Therefore,
the model reveals that the CE is fully consistent with sustainable development, contributing to the three
pillars: economic, social, and environmental. Millar et al. (2019) argue that the CE cannot be understood
as an optimal tool for sustainable development. While this is true, the CE can be viewed as a production
model supporting sustainable development. This is consistent with the model’s results, which show
that the CE is a necessary but not sufficient condition for sustainable growth. The CE is adopted, not
to solve all environmental and natural resource problems, derived from a linear conception of the econ-
omy, but as a strategy to mitigate those problems, by partially closing the open-loop of the standard
linear production model. Schroeder et al. (2018) argue that the CE can contribute directly to attaining
a high number of UN Sustainable Development Goals, while Geissdoerfer et al. (2017) highlight the
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differences and similarities between the CE and sustainability concepts. Millar et al. (2019) review the
concepts of the CE and sustainable development and their relationship. The macroeconomic approach
in this chapter contributes to that debate and shows that the economic, welfare, environmental and sus-
tainable development implications of the CE are radically opposite to those of the linear economy. Lin
(2020) points out the relationship between sustainable growth and CE and the importance of CE achiev-
ing the goal of sustainability, arguing that sustainable growth can be understood as an institutional
arrangement of regenerating circular output in a sustainable way.

Second, the CE cannot solve all the environmental and natural resources exploitation problems gen-
erated by the linear economy. As pointed out by Millar et al. (2019), the CE can be interpreted as a
positive contribution to a more environmentally sustainable model mitigating some of the problems
produced by the linear economy. The CE can contribute to closing the "open-loop" on which the linear
economy is based and, hence, promote economic growth by reducing its negative consequences for the
environment and natural resources. Even in the case of 100% of energy being renewable and a recycling
rate of 100%, the pressure on natural resources would exist in a growing economy. That is, full circu-
larity of the economy would eliminate environmental quality damage but would not totally eliminate
the pressure on the natural system. On the other hand, it is widely accepted that there is a relation-
ship between the history of waste and climate change, and that CE policies should not only concern
nowadays waste, but also the already accumulated waste in Earth, considering them as useful (new)
factors of production and consumption. Korhonen et al. (2018a) identified six limits for the CE, includ-
ing thermodynamics, spatial and temporal system boundaries, the limits posed by the physical scale
of the economy, and the limits posed by path-dependency. These limits are also present in our model,
in which the CE cannot be a substitute for the linear economy. Nevertheless, we show that the CE is
essential for reducing the stock of waste and preserving the environment as output grows. Only in the
presence of the CE is an EKC represented by a hump-shaped relationship between the output and the
stock of waste obtained. Without increasing the circularity of the economy, economic growth leads to
the accumulation of waste with adverse effects on social welfare from environmental deterioration. Lin
(2020) proposes a Circular Economy National Income Accounting (CENIA) framework for measuring
the contribution of CE to sustainable growth, where circular output representing the domestic demand
for sustainable development is incorporated as a new component to the traditional definition of GDP.

Third, technological change, accounting for a reduction in the cost of recycling activities, improves
the circularity of the economy and reduces the stock of pollution. Korhonen et al. (2018b) warn about
the possibility of a "rebound" effect provoked by the expansion of the CE. The "rebound" effect is well-
known in the energy literature and states that an increase in energy efficiency leads to an increase in
energy consumption, reversing the initial positive effects of efficiency gains. The model developed here
predicts no rebound effect from the CE, clearing the way for expanding the circularity of the economy.
We find that expanding the CE has a positive effect on output, enhancing income growth without ad-
verse effects on natural resource exploitation. This paves the way to the active use of this type of policies
which augment the circularity of the economy as a strategy for sustainable long-run growth.

Finally, we find that any shock that increases the cost of natural material without directly affecting
the rest of the economy is counterproductive for the CE and involves many adverse consequences for
the economy. Although the relative price of recycled versus natural material declines, the optimal the
optimal recycling rate decreases in response to the negative effects of this policy on output and con-
sumption. Paradoxically, the decline in waste generation leads to an accumulation of the stock of waste,
given the counter-reaction of the recycling rate. Therefore, while a shock increasing the cost of natu-
ral material would limit the natural resource depletion rate, it would provoke a deterioration of the
environment by accumulating more waste at the same time as limiting the circularity of the economy.
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10.6 Technical Appendix

This technical appendix presents the social planner maximization problem, the first order conditions
for optimality, the algorithm for solving the steady state of the economy, and the procedure used to
calculate the transition dynamics to the new steady state following a permanent technological shock.

10.6.1 The circular-linear economy model

We consider a CE model embedded in a standard neoclassical growth model for a linear economy. Waste
is assumed to be generated by the consumption of final goods. Waste that is not recycled is accumulated
into a stock of waste that affects negatively the households’ utility.

Households

We consider an economy populated by an infinitely lived representative household with preferences
over consumption, leisure, and environmental quality. The instantaneous utility function is defined as:

U(Ct, Lt, Zt) = ln Ct − θ
L

1+ 1
ρ

t

1 + 1
ρ

− ϕZχ
t (A10.1)

where Ct is the consumption of goods and services, Lt is the labor and Zt is the level of pollution gener-
ated by waste residuals from consumption activities that are assumed to be equal to the stock of waste.
The parameter θ > 0 represents the willingness to work, and ρ is the Frisch intertemporal elasticity of
labor supply representing the change in worked hours change in response to a change in the equilibrium
wage, given a constant marginal utility of wealth. Waste is considered to be a negative externality, reduc-
ing households utility function. The disutility produced by the accumulated waste stock is measured
by the parameter ϕ. We assume that UZ < 0 and UZZ < 0, indicating that, as waste is accumulated, its
cost, in terms of utility, increase. The parameter χ > 1 represents the elasticity of utility with respect to
pollution.

The resource constraint is given by:

Ct + It + ΘnNt + ΘvVt = Yt (A10.2)

where It is investment, Nt represents natural resources, Vt denotes recycled materials, and Yt is final
output. Θn and Θv are technological parameters reflecting the real cost of natural and recycled material,
respectively, which are assumed to be exogenously given.

We assume the following accumulation process for physical capital, Kt:

Kt+1 = (1 − δk)Kt + It (A10.3)

where δk (0 < δk < 1) is the physical capital depreciation rate.

Waste and recycling

The model considers the existence of a negative externality in the form of waste. We assume that waste
is generated by the consumption of final goods. Waste generated by consumption, Xt, is defined by the
following function:

Xt = X(Ct) = ηCγ
t (A10.4)

where γ is the elasticity of Xt with respect to consumption, and η is a parameter concerning waste as a
by-product of consumption. This parameter indicates the fraction of consumption that is transformed
into waste (waste content per consumption unit).
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We assume the following accumulation process for waste:

Zt+1 = (1 − δz)Zt + (1 − µt)Xt (A10.5)

where Zt is the stock of waste, δz is the decay rate of waste, and 0 < µt < 1 is the recycling rate.
Therefore, recycled materials are produced according to:

Vt = µtXt (A10.6)

Production function

We use a standard Cobb-Douglas production function with three inputs: physical capital, labor and raw
materials. This technology is given by:

Yt = AtK
α1
t Mα2

t L1−α1−α2
t (A10.7)

where Yt is the aggregate output, At is a measure of Total Factor Productivity (TFP), Lt collects labor
services, Kt represents physical capital and Mt concerns the raw materials. α1 represents the elasticity
of output with respect to capital and α2 is the elasticity of output with respect to raw materials. Mate-
rials used in production match an Armington aggregator of both virgin natural resources and recycled
materials:

Mt =

[
ωN

σ−1
σ

t + (1 − ω)V
σ−1

σ
t

] σ
σ−1

(A10.8)

where ω is a distribution parameter and σ is the elasticity of substitution between natural resources and
recycled material.

Centralized equilibrium

Given the existence of a negative externality, we consider the case of a planning problem, in which we
assume the existence of a central planner who maximizes social welfare by choosing optimal values for
the consumption, labor, capital stock, stock of waste and recycling rate. The central planner solves the
following problem,

max
{Ct,Lt,Kt+1,µt,Zt+1}

∞

∑
t=0

βt

ln Ct − θ
L

1+ 1
ρ

t

1 + 1
ρ

− ϕZχ
t

 (A10.9)

The central planner maximization problem can be defined using the following Lagrange auxiliary
function:

L =
∞

∑
t=0

βt

ln Ct − θ
L

1+ 1
ρ

t

1 + 1
ρ

− ϕZχ
t


−λ1,t

 Ct + Kt+1 − (1 − δk)Kt + ΘnNt + ΘvVt

−AtK
α1
t

[
ωN

σ−1
σ

t + (1 − ω)V
σ−1

σ
t

] α2σ
σ−1

L1−α1−α2
t


−λ2,t

[
Xt − ηCγ

t
]

−λ3,t [Zt+1 − (1 − δZ)Zt − (1 − µt)Xt]

−λ4,t [Vt − µtXt] (A10.10)
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where β is the discount factor, and λi,t, i = 1, 2, 3, 4 are Lagrange’s multipliers. First order conditions for
social welfare maximization are given by,

∂L
∂Ct

:
βt

Ct
− λ1,t + λ2,tηγCγ−1

t = 0 (A10.11)

∂L
∂Lt

: −βtθL
1
ρ

t + λ1,t(1 − α1 − α2)
Yt

Lt
= 0 (A10.12)

∂L
∂Kt+1

: −λ1,t + λ1,t+1

[
(1 − δk) + α1

Yt+1

Kt+1

]
= 0 (A10.13)

∂L
∂Nt

: −λ1,t

Θn − α2ω
YtN

−1
σ

t

M
σ−1

σ
t

 = 0 (A10.14)

∂L
∂Vt

: −λ1,t

Θv − α2(1 − ω)
YtV

−1
σ

t

M
σ−1

σ
t

− λ4,t = 0 (A10.15)

∂L
∂Zt+1

: −βt+1ϕχZχ−1
t+1 − λ3,t + λ3,t+1(1 − δz) = 0 (A10.16)

∂L
∂Xt

: −λ2,t + λ3,t(1 − µt) + λ4,tµt = 0 (A10.17)

δL
δµt

: −λ3,tXt + λ4,tXt = 0 (A10.18)

From first order conditions we obtain the following values for the Lagrange’ multipliers:

λ1,t =
βtθL

1
ρ+1
t

(1 − α1 − α2)Yt
(A10.19)

λ2,t =
βt

ηγCγ−1
t

 θL
1
ρ+1
t

(1 − α1 − α2)Yt
− 1

Ct

 (A10.20)

λ2,t = λ3,t = λ4,t (A10.21)

where λ1 represents the shadow cost of labor, λ2 represents the shadow cost of waste, which is equal to
the shadow price of the stock of pollution, λ3, and equal to the shadow price of recycled materials, λ4.

The shadow price of recycled material is given by:

λ4,t = − βtθL
1
ρ+1
t

(1 − α1 − α2)Yt

1 − α2(1 − ω)
YtV

−1
σ

t

M
σ−1

σ
t

 (A10.22)

Alternatively, Lagrange’ multipliers can also be written as:

λ1,t =
βt

Ct + γXt

[
Θv − α2(1 − ω)

YtV
− 1

σ
t

M
σ−1

σ
t

] (A10.23)

λ2,t = − βt

γXt +
Ct

Θv−α2(1−ω)
YtV

− 1
σ

t

M
σ−1

σ
t

(A10.24)
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The optimal quantity of natural resources is given by:

Θn M
σ−1

σ
t = α2ωYtN

−1
σ

t (A10.25)

The optimal investment decision is given by:

Ct+1 + γXt+1

[
Θv − α2(1 − ω)

Yt+1V− 1
σ

t+1

M
σ−1

σ
t+1

]

Ct + γXt

[
Θv − α2(1 − ω)

YtV
− 1

σ
t

M
σ−1

σ
t

] = β

[
1 − δk + α1

Yt+1

Kt+1

]
(A10.26)

which represents the optimal consumption path as combination of both the linear economy and the
circular economy, under the presence of waste.

Finally, the equilibrium condition for the optimal quantity of recycled material, indicating the opti-
mal circularity of the economy, is given by:

βt+1ϕχZχ−1
t+1 =

βtθL
1
ρ+1
t

(1 − α1 − α2)Yt

Θv − α2(1 − ω)
YtV

−1
σ

t

M
σ

σ−1
t

−

βtθL
1
ρ+1
t+1

(1 − α1 − α2)Yt+1

Θv − α2(1 − ω)
Yt+1V

−1
σ

t+1

M
σ−1

σ
t+1

 (1 − δz) (A10.27)

Then, the optimal quantity of recycled material depends directly on the difference between its price
and its productivity in t and t + 1 but also on how accumulated pollution affects the shadow price of
consumption and how harmful is this pollution to welfare.

Steady State

For reader convenience, we report hereafter the system of equilibrium equations used to simulate the
model.

Y = AKα1 Mα2 L1−α1−α2 (A10.28)

M =
[
ωN

σ−1
σ + (1 − ω)V

σ−1
σ

] σ
σ−1

(A10.29)

I = δK (A10.30)

C = Y − I − ΘnN − ΘvV (A10.31)

X = ηCγ (A10.32)

µ =
V
X

(A10.33)

Z =
(1 − µ)X

δz
(A10.34)

L =


(

1
C − ϕχZχ−1

δz
ηγCγ−1

)
(1 − α1 − α2)Y

θ


ρ

1+ρ

(A10.35)

K =
α1Y

1
β − 1 + δ

(A10.36)
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N =

(
α2ωY

Θn M
σ−1

σ

)σ

(A10.37)

V =

 α2 (1 − ω)Y(
Θv − ϕχZχ−1(1−α1−α2)Y

θL
1
ρ +1

δz

)
M

σ−1
σ


σ

(A10.38)

where we drop the time subscripts of variables to denote steady state values. The system of equations
(A10.28)-(A10.38) has 11 equations for 11 unknowns, (C, I, L, K, Y, M, N, V, X, Z, µ).

Solution algorithm

The above system of steady state equations have been numerically solved using the Newton-Raphson
algorithm.20 In particular, the steady-state solution algorithm is as follows. The steady state is defined
by n equations with n unknowns: F : Rn −→ Rn. The solution for this problem consists in to find a
vector x̂ = (x̂1, ..., x̂n) of Rn such as F : Rn −→ Rn should be F(x̂) = 0. To run the algorithm we start
from a guess solution, x0. We start from a Taylor expansion function around an initial value xn:

F(x) = F(xn) + F′(xn)(x − xn) +
F′′(xn)

2!
(x − xn)

2 + ...

That expression is then evaluated for different values, starting from the initial guess value, such as:

F(xn+1) = F(xn) + F′(xn)(xn+1 − xn) +
F′′(xn)

2!
(xn+1 − xn)

2 + ...

The solution is given for the value that makes the Taylor expansion equals zero:

F(xn) + F′(xn)(xn+1 − xn) +
F′′(xn)

2!
(xn+1 − xn)

2 + ... = 0

If the Taylor expansion series is truncated in the second term (first order approximation), we have
that:

F(xn) + F′(xn)(xn+1 − xn) ≃ 0

The above approximation is closer to zero when the value would be closer to the true solution.
Operating we obtain:

xn+1 = xn −
F(xn)

F′(xn)

and this is the so-called Newton-Raphson formulae. The procedure is iterative and consists in comput-
ing the above expression for the different approximations, step by step. In general, the first order Taylor
expansion of the function F is:

F(x) ≈ F(x) + J(x)(x − x)

where J(x) is the Jacobian matrix of F evaluated at x:

J(x) =


F11(x) F12(x) ... F1n(x)
F21(x) F22(x) ... F2n(x)

... ... ... ...
Fn1(x) Fn1(x) ... Fnn(x)


20Codes have been written in Matlab and are available from the authors upon request.
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and where Fij(x) = ∂Fi(x)
∂xj

. As x goes closed to the value x, the higher order terms go to zero. Given that
we are looking for the zero value for equations F(x), the above expression can be evaluated at x̂ and
thus, be written as:

x̂ ≈ x − J(x)−1F(x)

Transition to the steady state

To compute the transition path (Figures 10.5 and 10.6 in the chapter) to the new steady state, we first
compute the initial and the new (final) steady state using the previous algorithm, resulting from a per-
manent technological shock to natural resources and recycled material. Then, we use a perfect foresight
simulation by solving the dynamic non-linear model using the Klein (2000) method, by computing the
first order approximation solution to the non-linear rational expectation model. The Klein’s solution
method based on the use of a generalized Schur form to solve the linear approximation of the model,
where the solution is a system of recursive equations.. Once the policy and transition functions are ob-
tained as recursive equations, we simulate these policy and transition functions starting from the initial
steady state until the change is the endogenous variables is zero, that is, to the point in which the new
steady state have been reached. Figures 10.5 and 10.6 plots the transition path as deviation to the initial
steady state.

Universidad Internacional de Andalucía, 2023



223

Part V

Concluding remarks
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Chapter 11

Conclusions, limitations and future
research

The advent of automation and artificial intelligence has heralded a disruptive era in the global econ-
omy, transforming our understanding of labor markets, fiscal policy, and economic paradigms. This
dissertation has advanced our understanding of the economic implications of the rapid proliferation of
automation technologies for the global economy by examining the impact of adopting new autonomous
technologies on economic outcomes, public finance, and social security. Through the careful examina-
tion of three interconnected perspectives - macroeconomic effects, fiscal impacts, and social security
sustainability - a coherent picture emerges that underscores the profound economic shifts automation
and AI are likely to bring about.

The synthesis of the macroeconomic perspective collected in Part II of the thesis (Chapters 2, 3, and
4) unearths critical insights into the factors that shape the impacts of these technologies on labour, gov-
ernment finances, and social security. The findings from these chapters call for a reevaluation of existing
tax systems and social security financing in light of the increasing adoption of autonomous technology.
While the integration of autonomous technologies can potentially transform economies by enhancing
productivity and output, its consequences on labour markets, public finance, and social security sustain-
ability require comprehensive policy responses. Policymakers, therefore, must navigate this evolving
landscape with care, balancing the need for economic growth with the imperatives of social equity and
fiscal sustainability. The ongoing debate around these issues points to the need for more comprehensive
research and policy innovation in the face of accelerating automation. Future research should continue
to explore the implications of alternative tax schemes and investigate the political feasibility of imple-
menting such policies.

The advent of the fourth industrial revolution has thrust technology, particularly robotics and AI,
into the spotlight as pivotal influencers in reshaping labour markets. Indeed, the digital age is catalysing
a profound transformation in labour markets. This transformation, marking the fourth industrial revo-
lution, wields the capacity to create, transform, and even eliminate occupations. Consequently, under-
standing their impact becomes paramount for economists, policymakers, and businesses, as they strive
to navigate the future of work. As we navigate the complexities of digitalization, it is crucial to under-
stand how these technological advancements are shaping occupations and influencing labour mobility
and labour market transitions.

In essence, our work indicates that digitalization, while transformative, requires a nuanced under-
standing and continuous policy adaptations to ensure labour markets remain resilient, inclusive, and
equitable. It is important to highlight that these transformations present both challenges and oppor-
tunities. The bifurcation observed in labour mobility patterns suggests a possible segmentation of the
labour market. On one hand, the highly skilled segment will likely occupy jobs that interact positively
with newer technologies, while the less productive or older workforce might be relegated to low-wage,
unstable jobs, or worse, find themselves technologically unemployed with obsolete skills. On the other
hand, there lies an opportunity for policies to guide workforce training and retraining, preparing the
labour supply for future jobs and providing protection for those negatively affected during the transi-
tion.
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The findings of this thesis highlight the importance of guiding the training and retraining of the
workforce to prepare for the jobs of the future. Policy measures for the protection of those negatively
affected are needed, particularly during the transition period toward an economy based on newer, more
sophisticated knowledge, and during periods between jobs where reskilling may be necessary. Policy-
makers have a crucial role in guiding workforce training and retraining efforts to prepare for the jobs
of the future. By understanding the dynamic landscape of work and digitalization, researchers, policy-
makers, and businesses can work together to create a sustainable, equitable, and prosperous future for
all. The path to a future where technology and labour harmoniously coexist is fraught with challenges,
but with continuous monitoring, adaptation, and the right policy measures, we can ensure a resilient
labour market in the face of technological advancements.

Future research could delve deeper into the role of human capital across various demographics, firm
size, and knowledge intensity, providing further insights into labour transitions in the face of transfor-
mative and destructive digitalization. This would enable a deeper understanding of human capital’s
role in determining transitions across occupations exposed to different levels of digitalization. By doing
so, we can better prepare for an economy based on sophisticated knowledge, ensuring a prosperous
future for all.

This dissertation also explores the effects of automation, AI, and machine learning (ML) on early
retirement and unemployment transitions among older workers. The analysis reveals that the impact
of these technological advancements varies depending on factors such as gender, education level, job
status, and the specific technological domain in question. Furthermore, the results show that these
technologies can both complement and substitute human labour, leading to differentiated outcomes for
workers. These findings are of significant interest, given the rapid pace of technological change and its
potential implications for the labour market and retirement decisions.

The rapidly evolving technological landscape is reshaping the labour market, impacting older work-
ers’ decisions regarding early retirement and unemployment transitions. It is critical that policy-makers,
educators, and employers take proactive steps to address these changes, ensuring that older workers can
continue to contribute to the workforce in meaningful and sustainable ways. Such interventions should
not only focus on promoting education and training but also consider the diverse impacts of technologi-
cal changes across different groups of workers, ensuring an inclusive approach to managing this digital
transition.

In the context of early retirement, the findings suggest that workers with no higher education and
high automation degree and/or risk are more likely to opt for early retirement, whereas individuals with
higher education are less likely to do so. Moreover, women are more affected by automation in terms
of early retirement transitions. In the case of AI, the impact on early retirement depends on the level of
AI advances and exposure in each occupation, with tertiary education playing a critical role in shaping
these effects. When examining unemployment transitions, computerization is found to have a negative
effect on employment, while AI technologies can serve as a protective factor against unemployment.
However, higher suitability to ML increases unemployment probabilities. Additionally, the impact of
technological advancements on unemployment transitions varies depending on job status.

In light of these findings, the need for interventions to help older workers navigate the changing
labour market is clear. Policies should aim to prevent early exits from the labour market, promote
lifelong learning and retraining programs, encourage age-friendly workplace practices, and strengthen
active labour market policies. Special attention should be given to providing adequate support for older
workers in the face of increasing computerization, AI, and ML advancements. This includes fostering
collaboration between government, industry, and educational institutions to ensure older workers have
access to relevant training and education opportunities, as well as supporting the development and
adoption of complementary AI technologies that can help older workers maintain their competitiveness
in the labour market.

It is important to note that the research presented in this dissertation is subject to certain limita-
tions. Particularly, the segment of the thesis encompassing Chapters 6 through 9 operates under the
assumption that the job content of an occupation in the US is identical to that in the European countries
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of the sample, which presents a potential limitation. The crosswalk between SOC-10 and ISCO-08 is
assumed to be perfect, which may not reflect the reality accurately. This assumption, while necessary
for this analysis, may not fully capture the nuances and variations in job content and the influence of
technological change across different countries and regions.

Despite these limitations, the dissertation provides valuable insights into the impact of automation,
AI, and ML on the labour market and offers practical policy recommendations to address the challenges
faced by older workers. Further research is required to refine our understanding of the complex in-
teractions between technological changes and labour market dynamics. This would involve further
exploration of the unique challenges faced by different worker groups and the potential of personalized
policies in addressing these challenges.

Furthermore, Chapter 9 is currently undergoing a methodological enhancement overhaul, transi-
tioning from cross-sectional analysis (i.e., investigating immediate outcomes post-displacement) to a
panel data approach. This transformation implements multinomial logit models, endowed with corre-
lated random effects, which, in theory, facilitate the overcoming of the Independence of Irrelevant Al-
ternatives (IIA) issue. The proposed alteration would consider displacement as merely an identification
tool, rather than solely observing the ensuing changes. It would be insightful to analyse the duration
required for those individuals starting in unstable occupations to transition states, whether shifting to
alternative occupational fields or transitioning into unemployment.

Chapter 10 of this thesis provides an essential exploration of the optimal recycling rate in an economy
that incorporates both linear and circular production technologies from a macroeconomic perspective,
using standard tools in mainstream economics. In the past, macroeconomic models have not accounted
for the circular economy, even those that integrate environmental pollution and natural resource issues,
and this dissertation fills this gap by integrating circular economy into a standard traditional macroeco-
nomic neoclassical optimal growth model. The novel model incorporates the circular economy to coun-
terbalance waste accumulation’s negative externality and as an input-augmenting technology. Conse-
quently, the model facilitates an integration of linear and circular economies, paving the way for a deep
understanding of their interactions by providing a robust theoretical framework for understanding the
intertwined relationship between economic growth, social welfare, environmental preservation, and the
role of the circular economy. It offers valuable insights for future research and policymaking in our quest
for sustainable development.

All in all, this thesis is biased by the availability of data on both autonomous technologies and
the circular economy. For this reason, the exposed macroeconomic models are calibrated rather than
estimated due to the lack of appropriate time series to make estimations. Although the IRF provides data
on industrial robots, the concept of autonomous capital covered in the thesis encompasses a broader
technological horizon including AI as well as intangible assets that are difficult to quantify. Therefore,
the research developed in this thesis has the potential to be revisited and contrasted in greater depth
as the availability of data on the topics analysed increases, allowing for more accurate analyses that
provide more concrete evidence on the paradigms studied.
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