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Introduction 

Genomic imprinting is an epigenetic modification of dispersed regions of the genome 

depending on their exposure to the maternal or paternal germline. This results in 

differential expression of only one of the two alleles depending on the parent of origin. 

Allele-specific CpG methylation, histone acetylation, asynchronous DNA replication 

and chromatin condensation are all associated with imprinted loci [1].  

Recently, the question of whether imprinted genes have sequence characteristics that 

distinguish them from non-imprinted genes is drawing the attention of several research 

groups. Such structural differences may elucidate the mechanisms leading to allele-

specific expression of imprinted genes [2]. Greally and co-workers [3] found that the 

main sequence characteristic of human imprinted genes is a lower incidence of short 

interspersed nuclear elements. For tandem repeats and CpG islands, there is 

accumulating evidence correlating these elements and genomic imprinting. Accordingly, 

some authors [4-7] suggested using these sequence features as a search tool for 

imprinted genes. Identifying imprinted genes experimentally is challenging because the 

monoallelic expression of an imprinted gene may occur only in one of possibly several 

isoforms, only in particular tissues, or only at particular stages of development. Many 

autosomal genes are imprinted only in specific tissues or cell types, including GRB10 

[8], Igf2/H19 [9], UBE3A [10], ATP10A (formerly ATP10C) [11] and KCNQ1 [12]. 

Consequently, in the absence of any method for prioritizing genes, an average of 100 

genes must be examined before a new imprinted gene can be identified. Indeed, 

experimental identification of human imprinted genes to date has been slow. To date, 

only ~60 human imprinted genes have been identified. 

For this reason, the application of sequence analysis approaches to genome-wide 

screening of human genes, which can be ranked to identify those with a sequence 

composition suggestive of imprinting, is very useful. 

To date, imprinted genes are predicted using a wide range of genomic features and 

sophisticated strategies and methodologies [13-16], but no simple sequence patterns and 

models are known to accurately distinguish imprinted genes from non-imprinted ones. 

But even so, a simple approach would be potentially valuable for directing laboratory 

work in a first stage. 
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Table 1.  List of imprinted genes classified by expression 

Name Band Expression 

   

TP73 1p36 M 

LRRTM1 2p12 P 

NAP1L5 4q22 P 

PRIM2 6p12 M 

PLAGL1 6q24 P 

HYMAI 6q24 P 

PEG10 7q21 P 

PON1 7q21 P 

CALCR 7q21 M 

PPP1R9A 7q21 M 

MEST 7q32 P 

COPG2 7q32 P 

CPA4 7q32 M 

KLF14 7q32 M 

KCNK9 8q24 M 

INPP5F_V2 10q26 P 

KCNQ1 11p15 M 

IGF2AS 11p15 P 

SMPD1 11p15 M 

IGF2 11p15 P 

ZNF215 11p15 M 

H19 11p15 M 

SLC22A18 11p15 M 

PHLDA2 11p15 M 

NDN 15q11 P 

MKRN3 15q11 P 

MAGEL2 15q11 P 

UBE3A 15q12 M 

TCEB3C 18q21 M 

NNAT 20q11 P 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are concerned with identifying possible candidate imprinted genes to allow their 

imprinting status to be determined experimentally. For this reason, human gene coding 

region features are considered further with a view to developing an approximation to a 
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first stage screening and classifying genes into imprinted and non-imprinted candidate 

groups. This study uses statistical approaches for a first discrimination between 

imprinted and non-imprinted genes based on the currently available coding region 

sequences. 

 

Results and Discussion 

Recently, Ke and co-workers [14] found significant statistical differences between some 

sequence descriptors of human imprinted and control gene coding regions. These 

significant variables in their regression model were the Simple and Large Tandem 

Repeats, GC content, CpG islands and short interspersed nuclear elements. 

Taking into account this fact, we considered these descriptors (variables) as the most 

relevant ones for our study. So, the [bp]% genomic sequence characteristics of GC 

content, CpG islands, Simple Repeats (SR), Large Tandem Repeats (LTR) and SINEs 

of all imprinted and non-imprinted coding region sequences were calculated. 

Before applying the pattern recognition methods, each calculated descriptor was 

autoscaled. In the autoscaling method, each variable is scaled to a mean of zero and a 

standard deviation of unity. This method is very important because each variable is 

weighted equally and this provides a measure of the ability of a descriptor to 

discriminate classes of compounds [18]. With this method, we can compare all 

descriptors at the same level. 

Firstly, we started applying the PCA technique. After several PCA analyses, the best 

separation was obtained by using the following descriptors: GC content, [bp]%CpG 

islands, [bp]%Simple Repeats and [bp]%Large Tandem Repeats. This suggests that in 

this case, the other variables are not significant for the classification of the coding 

regions studied.  

The PCA results show that the first component (PC1) is responsible for 49.6% of the 

variance of the data. Considering the first (PC1) and second (PC2) components, the 

accumulated variance increases to 72%. Figure 1 show that both PC1 and PC2 are in 

fact responsible for the discrimination between imprinted (two groups: I1 and I2) and 

non-imprinted (two groups: NO_I1 and NO_I2) genes. PC1 and PC2 can be represented 

by the following equations that in fact, form the PCA pattern recognition model: 

 

(1)  PC1=0.535 [GC content] + 0.511[[bp]%CpGislands] + 0.521[[bp]%LTR] + 0.426[[bp]%SR]     

(2)  PC2=-0.425[GC content] - 0.467[[bp]%CpGislands] + 0.313[[bp]%LTR] + 0.71[[bp]%SR]        
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Figure 1. The separation of the training set into four groups: I1, I2, NO_I1 and NO_I2. Notice that 

both PCs are responsible for the separation 

 
From Figure 2 and Equations (1) and (2), we can see that the imprinted group I1 has 

large values for GC content and [bp]%CpG islands and a major content of [bp]%LTR 

compared with the I2 group. The imprinted group I2 has small values for GC content 

and [bp]%CpG islands and a major content of [bp]%SR.   

On the other hand, we can see that the major part of non-imprinted genes, the NO_I2 

group, has small values for [bp]%SR and [bp]%LTR and the NO_I1 group has large 

values for the same both descriptors. It is clear that there are four coding region groups 

and each one is located in practically one specific quadrant of the XY axes.  
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Figure 2. Plot of the loading values of the selected variables used in the training set  

 
 

Genomic sequence characteristics of a total of 22544 bp from the coding sequences of 

12 (I1 group) imprinted genes were compared to those of 66959 bp of coding sequences 

of 18 (I2 group) imprinted genes (Table 2) in order to carry out a deep study of the most 

relevant imprinted descriptors. The average number of CpG islands was higher in I1 

group (1.8) than in I2 group (0.4). The frequency of G + C was also higher in I1 genes 

(62%) than in I2 ones (45%). Moreover, the average number of the ratio  [bp]%LTR / 

[bp]%coding sequence coefficient is higher in the I1 group (I1) than in I2 (0.03). Note 

that these results are in good agreement with the loadings of the PCA model. 

We found an obvious functional difference between I1 and I2 groups in terms of 

expression pattern. We observed maternal expression for 67% of the I1 imprinted genes 

and paternal expression for 61% of the I2 imprinted genes. 

Moreover, other important observation is that all the Large Tandem Repeats of the I1 

group genes are inside a CpG islands while this fact is not observed in the I2 group. 

These results agree with those of Hutter and co-workers [11]: the CpG islands of 

imprinted genes contain some special DNA elements that distinguish them from CpG 

islands of biallelically expressed genes.  
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To identify sequence fingerprints and similarities among Large Tandem Repeats in the 

two impeinted groups, we used the Wilbur and Lipman pairwise sequence alignment 

method (see supplementary data for details) The I1 sequences group is quite consistent; 

all sequences are rich in GC content, and the similarity index of the aligmed fragments 

range from 60 to 100 %. In contrast, the sequences of the I2 group are longer, more 

heterogenous in terms of nucleotide composition; in some of them the presence of a 

polyA motif could be empathised . The I2 sequence repeats show a much more wide 

range of similarity index. In addition, because some significant differences in nucleotide 

composition between members of I2 sequences, some I2 sequence pairs could not to be 

aligned. From this analysis, we can conclude that these two Large Tandem Repeats: 

GC-motifs (in I1 group) and AT-motifs (in I2 group) are highly conserved sequence 

pattern across their respective coding regions.    
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Table 2. The number of large tandem repeats (LTR), CpG islands and GC content in coding sequences of imprinted genes 

 

I1 group Lenght 
CG 

content 
number 

CpGislands
number 

LTR size - count Consensus 
TP73 2234 64.6 3 0 - - 
LRRTM1 2217 58.4 2 1 24_7 ctgccgaaccacaccttccaggac 
KLF14 1383 66.8 2 1 18_9 cggcgcgcccgccgcctc 
KCNK9 1303 60.1 2 0 - - 
KCNQ1 3262 63.4 1 1 30_4 cgcggccgccgccccgggccccgcgccccc 
IGF2AS 2056 64 1 0 - - 
SMPD1 2473 59.8 1 1 6_9 cgctgg 
IGF2 1356 63.7 3 1 14_18 tccccccctctctc 
SLC22A18 1549 65 1 0 - - 
PHLDA2 937 61.7 1 1 9_14 ccgcgccct 
NDN 1897 52.3 2 1 57_4 cccaggcccacaacgccccgggcgccccgaaggcggttccgccggccgcggccccgg 
TCEB3C 1877 64.7 2 0 - - 
            
            

I2 group Lenght 
CG 

content 
number 

CpGislands
number 

LTR size - count Consensus 
NAP1L5 1912 42.9 0 1 12_7 ggaggaggagga 
PRIM2 2353 40.7 0 0 - - 
PLAGL1 4354 46.9 1 1  25 _3 atcttacaaaaaaaaaaaaaaaaaa 
HYMAI 5005 42.1 1 1 13_7  tatatatatataa 
PEG10 6628 44.7 2 2 42_3   12_4 agaagctctcagaggagaacaacaaccttcgagagcaggtgg  /   ccgccgcctcca 
PON1 2395 41.3 0 0 - - 
CALCR 3470 40.4 0 0 -  
PPP1R9A 9705 39.9 0 1 5_8 ttttc 
MEST 2507 45.1 1 2 42_4    23_3 ggcggctgcggctgccgcgcccggtgctgcccagcgctgcgg  /  caaaaaaaaaaaaaaaaaaaaaa 
COPG2 3365 43.1 0 0 - - 
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CPA4 2807 48.9 1 0 - - 
INPP5F_V2 4955 43.5 1 0 - - 

ZNF215 3658 40.4 1 2 84_3   84_3 
tattcgacatcaaaaaattcatactgaagcgaaggcctataaatgcaataaatgtgggaaagccttcagccgaagtgcagacct 
 /aaaactgcatactggagataagtcctgaaaatgtaaaaaatgtaggaaaaccttcaaccggagttcagaacttatttaacatca 

H19 2615 55.9 0 2 8_10    20_4 ggggggga / ctttttcttcttcctccttt 
MKRN3 3107 48 0 1 29_5 ttaaaaattatatatataagaatataaaa 
MAGEL2 2294 53.7 0 2 36_7   21_3 cgggccctgagtgtctgggagggcccaagcacctcc /   ggcctcctcaaaagagcgcag 
UBE3A 4491 36.7 0 1 10_7 aaaacaaaaa 
NNAT 1338 56.5 0 0 - - 
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Then, we built a new model using other statistical technique: the quadratic discriminant 

analysis (QDA). QDA analysis is also closely related to principal component analysis 

(PCA) in that both look for combinations of variables which best explain the data. QDA 

explicitly attempts to model the difference between the classes of data (supervised 

pattern recognition). PCA on the other hand does not take into account any difference in 

class (non-supervised pattern recognition). 

Table 3 shows the results of the QDA classification model. The total percentage of 

correct classification was 93% and the proportions for each group are: 100% (I2), 92% 

(I1), 90% (NO_I1) and 92% (NO_I2).  

 
Table 3. Classification obtained with the QDA analysis 

Group     I2       I1      NO_I1      NO_I2  
Count     18      12           21        51  
    
    
Summary of 
classification   
    
                        True Group  
Put into Group      I2     I1   NO_I1   NO_I2  
I2                          18      0         2           3  
I1                            0     11        0           1  
NO_I1                    0      0        19          0  
NO_I2                    0      1         0          47  
Total N                 18     12       21         51  
N correct              18     11       19         47  
Proportion           1,00  0,92    0,90      0,92  
    

N = 102           N Correct = 95           Proportion Correct = 0,93 
 Proportion Correct with Cross- Validation=0.833 

 

 

After the employing of QDA and PCA methods, we proceeded to the validation of their 

respective classification models.  

The cross-validation approach was used to validate the QDA model. The total 

percentage of correct classification was 83% (Table 3). Therefore, this result confirms 

the existence of four groups between the coding regions characteristics. 

On the other hand, the test set approach was used to validate the PCA model. We 

decided to apply the PCA model to a series of new predicted imprinted genes whose 

imprinting status was predicted by other methodologies [16] but it is still not 
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experimentally proved. In this way, apart from the construction of a representative test 

set, we could compare our PCA results with the ones of Luedi et al [16].     

To form a randomly test set, we did a full text mining search with all Luedi’s predicted 

gene names across the publication data of the Nutrigenomics Database 

(http://133.11.220.243/nutdb.html). After that, we formed a test group of 31 supposed 

imprinted genes related to nutrigenomics in humans (Table 4). It is important to 

emphasize that these possible imprinted genes are related with dietary factors known to 

influence DNA methylation as alcohol, folate, zinc and cadmium. We thought that this 

fact may be interesting for future nutrigenomic work. 

 
Table 4.  List of 31 genes from the test group 

Gene Expression Lenght Chromosome
GFI1 P 2784 1 
EFNA4 M 1276 1 
HSPA6 M 2664 1 
SHC1 M 1752 1 
CYP1B1 P 5128 2 
SIX3 P 1926 2 
OTX1 M 2176 2 

BCL2L11 P 3422 2 
HOXD9 M 2089 2 
PER2 M 6219 2 
PPARG P 1883 3 

POLR2H M 821 3 
PITX2 P 2122 4 
TLL1 P 6654 4 

NDUFS4 P 668 5 
ITGB8 M 8787 7 
CDK6 M 11611 7 
PTPRN2 M 4767 7 

GADD45G P 1078 9 

AKR1C2 P 1663 10 
GATA3 P 3070 10 
NRGN P 1295 11 
KLRF1 P 1242 12 
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KLRC3 P 1042 12 
POU4F1 M 5015 13 
F10 M 1560 13 
JAG2 M 5077 14 
SFRS2 M 2923 17 
GATA6 M 3494 18 
ELA2 M 938 19 
ZNF42 M 2620 19 
 

 

We calculated the genomic sequence characteristics of the 31 coding regions and then, 

we checked if our PCA pattern recognition model could classify them as imprinted 

genes, too.  

Figure 3 shows the results of the PCA calculations for the first (PC1) and second (PC2) 

principal components. Before carrying out the prediction calculations, the descriptors 

were also auto scaled as previously. We found that 27 of the 31 genes were classified in 

the two correct imprinted quadrants (84%) by the PCA model. The GFI1, HSPA6, 

HOXD9, PITX2, PTPRN2, GADD45G, GATA3, NRGN, F10, JAG2, GATA6, ELA2 

and ZNF42 genes are classified in the I1 imprinted group. The I2 imprinted group are 

formed by EFNA4, BCL2L11, PER2, PPARG, POLR2H, TLL1, NDUFSA4, ITGB8, 

CDK6, AKR1C2, KLRF1, KLRC3, POU4F1 and SFRS2 genes. 

Therefore, taking together these results and the ones of Luedi et al, we can suggest these 

27 genes as good candidates for an experimental imprinting determination.  
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Figure 3.  Scores for the predicted imprinted genes 

 
 

Conclusions 

The most important feature of the present work is its ability to use multivariate analysis 

to look at variation, at coding region DNA level, among imprinted and non-imprinted 

genes. There is a force affecting genomic parameters that appears through the use of the 

appropriate multivariate methods (principle components analysis (PCA) and quadratic 

discriminant analysis (QDA) to analyse quantitative genomic data. We show that 

variables, such as, CG content, [bp]% CpG islands, [bp]% Large Tandem Repeats, and 

[bp]% Simple Repeats are able to distinguishing human coding region imprinted genes.  

We know that a conclusive assessment of prediction methods for imprinted genes is 

problematic due to the small number of affected genes, their clustering in small genomic 

regions and the difficulty of experimental validation. 

However, we think that the application of this PCA sequence analysis approach to 

genome-wide screening of human genes, which can be ranked to identify those with a 

sequence composition suggestive of imprinting, is potentially valuable for a first stage 

approximation directing follow-up laboratory work. 

Clearly an approach like this can be further refined and the resolution improved as more 

imprinted genes are identified and confirmed and the genome sequencing completed. 
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Appendix 

Materials and Methods 

A positive training set of 30 human genes (Table 1) that showed imprinting effects were 

selected for analysis from the Catalogue of Imprinted Genes 

(http://igc.otago.ac.nz/home.html). A negative training set of 72 randomly selected 

control genes and a test set of 31 predicted imprinted genes were compiled from the 

recent literature [16] and were collected from the NCBI nucleotide database 

(http://www.ncbi.nlm.nih.gov/). See supplementary data for more details about these the 

genes used in this study. 

The sequence characteristics of the coding regions of each gene were examined in the 

analysis. These regions are the portions of a gene or an mRNA which actually code for 

a protein. 

For CpG dinucleotide analysis, we used the NEWCPGREPORT program 

(http://inn.weizmann.ac.il/cgibin/EMBOSS/emboss.pl?_action=input&_app=newcpgre

port), and the total number of CpG islands was counted.  For the repeat element analysis, 

the Repeat Masker program (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) 

was used and for tandem repeat analysis, the ETANDEM program 

(http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=etandem) was used.  All 

classes of repeat elements output from Repeat-Masker were collected. We used 

ETANDEM to obtain numbers of tandem repeat elements ranging from 5 bp to 100 bp. 

The Wilbur and Lipman pairwise sequence alignment method, implemented in the 

MegaAlign program of the DNAstar Sequence Analysis software (Lasergene v8.0; 

http://www.dnastar.com) used to align sequences of Large Tandem Repeats identified in 

imprinted genes. 

Principal Component Analysis (PCA) and Quadratic Discriminant Analysis (QDA) 

models of the [bp]% sequence characteristics data were performed using the Minitab 

software [17]. 

PCA analysis is a multivariate statistical technique. The central idea of PCA is to reduce 

the dimensionality of a data set that presents a large number of interrelated variables, 

while retaining as much as possible the variation present in the data set. PCA can search 

the data for qualitative and quantitative distinctions in situations where the number of 

data available is too large. 

The purpose of the Quadratic Discriminant Analysis is to predict membership of a 

group from a set of predictor variables (the sequence characteristics). The discriminant 



Universidad Internacional de Andalucía

 16

is the quadratic combination of the predictor variables that best predicts group 

membership, allowing each gene to be classified into either imprinted or control groups 

on the basis of its sequence characteristics. 

The performance of the classification was assessed using internal and external 

validation methods according to our software capabilities.  

With the QDA model, we used an internal validation method called cross validation 

[19]. This method uses the training set to check the model. Here, the training set is 

divided in several segments. One segment is reserved to corroborate the results and the 

rest of them are used to build the model.  

This process is repeated as many times as segments you have and every time, one of 

these segments is out of the calibration and the other ones are used to build the model. 

Finally, all the segments are both used to build and to validate the model. 

With the PCA model, we used the external validation test set method. The number of 

elements of this set must be large (at least 25% of the training set size) and it must be 

independent of the training set but also, this test set must represent the training set. The 

imprinted status of the test set is known so, it is possible to assess the PCA model using 

different elements that the ones used to build the model. 
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