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Abstract 12 

Chromatin accessibility is key for the regulation of DNA expression and studies about it help to map 13 

the different transcriptional landscapes the cell can have under determined circumstances. The ATAC-14 

seq assay employs the transposase Tn5 to identify regions of accessible chromatin, however, the proper 15 

software or pipelines to analyze the ATAC-seq data are still very scarce. Here we show that peak-shape 16 

based clustering and analysis developed for ChIP-seq data is also valid for ATAC-seq datasets. Our 17 

study provided information about how clusters showed different distribution of promoter and enhancer 18 

regions as well as distinctive signatures of histone marks and transcription factors associated to motifs. 19 

We also developed a prediction model to specify how peak shape can be useful for determining DNA 20 

elements’ nature. These results show how peak shape provides useful information about the 21 

chromatinic state of the genes and reveal interesting biological insights about transcription regulation 22 

and up-regulated biological processes. This study can be the starting point for more ATAC-seq analysis 23 

studied in different cell lines, phases of the cell or pathologic circumstances in order to provide a 24 

general overview of the accessible chromatin regions, the transcriptional state of the cell and the 25 

epigenetic marks of DNA. 26 

1 Introduction 27 

The different levels of DNA compaction play a key role in the organization of DNA in the nucleus and 28 

allow fine regulation of gene expression. Depending on the degree of compaction, two types of 29 

chromatin are distinguished: heterochromatin, regions with transcriptionally inactive genes; and 30 

euchromatin, regions of less compact chromatin where gene expression does take place.  31 
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Of the levels of DNA organization, the nucleosome is the basic fundamental unit of compaction, 32 

consisting of the DNA strand coiled around a histone octamer made up of two copies of each of the 33 

four histone types (H2A, H2B, H3 and H4) (Albert et al., 2002). Regions of open chromatin show a 34 

lower nucleosome density or even nucleosome-free regions. In addition, active chromatin is marked 35 

by a specific combination of posttranslational modifications of core histone proteins (H3K27ac, 36 

H3K4me1 and H3K4me3) and by the presence of histone variants like H2A.Z and H3.3. In contrast, 37 

transcriptionally repressed genes are often organized within 'closed' chromatin domains, marked by 38 

different histone modifications (e.g. H3K27me3 and H3K9me3) (Siggens et al,. 2014). The degree of 39 

variability in DNA and histone modifications observed between cell types is different for different 40 

genomic elements, such as promoters, enhancers, or insulators. Therefore, different cell types, as well 41 

as the signalling cascades that produce differentiated cells, are characterized by a unique chromatin 42 

signature. The distribution of these regions varies according to cell stage and cell type, giving the cell 43 

a specific phenotype that can be used as a fingerprint to characterize a cell at a given time, as well as 44 

the effects of extracellular signals and to compare the response to stress, pathological and physiological 45 

states. 46 

Transposase-accessible chromatin assay by sequencing (ATAC-seq) is an alternative or 47 

complementary technique to MNase-seq, DNase-seq and FAIRE-seq for assaying chromatin 48 

accessibility. The results obtained from ATAC-seq are similar to those of DNase-seq and FAIRE-seq, 49 

however, ATAC-seq is gaining popularity because it does not require cross-linking, has a higher signal-50 

to-noise ratio, requires a much smaller amount of biological material and is faster and easier to perform 51 

compared to other techniques (Yan et al., 2020). This technique involves the Tn5 hyper-reactive 52 

transposase to cut and integrate the adapters in the regions of accessible chromatin, while the chromatin 53 

in closed conformation will present steric hindrance making the insertion less probable. Therefore, 54 

amplifiable DNA fragments suitable for high-throughput sequencing are preferentially generated at 55 

locations of open chromatin (Buenrostro et al., 2013), such as promoters or enhancers. After processing 56 

ATAC-seq data, aligned reads return a pattern of peaks that represent the active regulatory regions in 57 

the genome. Though, ATAC-seq data have been widely used to identify regulatory elements, the 58 

analysis of the morphology of these peaks was poorly studied. ATAC-seq peaks in the same region of 59 

the genome, have been shown to vary in certain characteristics such as width, intensity, or number of 60 

peaks in different cell types or under different conditions. This suggests that analysis of the shape of 61 

the peaks can provide relevant information about the cellular regulome. 62 

There are only two proper software that have been previously used for peak characterization based on 63 

the shape of ChIP-seq data. Those are SIC-ChIP (Shape Index Clustering for ChIP-seq peaks) 64 

(Cremona et al., 2015) and Fun-Chip. Given the scarce literature for the characterization of DNA 65 

regions from ATAC-seq studies based on peak morphology, in this study we have carried out the 66 

classification, analysis and annotation of the peaks generated by ATAC-seq performed in normal 67 

murine mammary gland epithelial cells (NMuMG) treated with TGFβ (Guerrero-Martinez et al., 2020), 68 

using the SIC-ChIP approach.  69 

Topography is the science that studies the land shapes and forms of the surface, involves the recording 70 

of relief, the identification of specific landforms. This is also known as geomorphometry. By analogy 71 

to discipline, we can say that, in this study we have carried out a topographic analysis of the ATAC-72 

seq peaks. This study revealed that morphological differences in peaks when classified according to 73 

five indices (height, area, width at half maximum height, number of local peaks and M-index) result in 74 

relevant biological information concerning chromatin signature and transcription factor binding motifs. 75 

Moreover, we developed a novel logistic regression model able to discriminate between regulatory 76 

elements based on ATAC-seq morphology indices. 77 

Universidad Internacional de Andalucía, 2023



  ATAC-seq topography analysis 

 

2 Materials and Methods 78 

2.1 Computational methods and statistical analysis. 79 

Most of analyses were performed using R (v4.2.1), RStudio (v2021.09.0+351) and Bioconductor 80 

(v3.15). Data preparation and other specific analysis were performed using proper software within 81 

Ubuntu (20.04). Ggplot2 package was used for graphical representation.  82 

2.2 Data acquisition  83 

ATAC-seq paired-end data of NMuMG cells after 2 hours of TGFβ treatment was obtained from the 84 

ENA (European Nucleotide Archive) database with accession number SRR10485876 (Guerrero-85 

Martinez et al., 2020).  86 

ChIP-seq data for H3K4me1, H3K4me3 and H3K27ac histones marks were obtained from GEO under 87 

accession number: GSM4174040, GSM4174046, GSM4174034, respectively. The data correspond to 88 

NMuMG cells after TGFβ treatment from the same study. 89 

JASPAR2022 vertebrate database was used to obtain transcription factor binding motifs information. 90 

The list of transcription start sites was obtained from UCSC KnownGene annotation for mm9 mouse 91 

reference genome 92 

2.3 Preprocessing of reads 93 

ATAC-seq ENCODE pipeline (https://github.com/kundajelab/atac_dnase_pipelines) was used for 94 

ATAC-seq data alignment and peak calling, including pre and postanalysis steps like denoising and 95 

trimming of primers as well as quality control and statistical methods such as IDR for well conserved 96 

peaks selection between replicates. Alignment was fitted using mm9 mouse reference assembly. This 97 

analysis results in 39432 peaks. 98 

GenomicAlignments package from Bioconductor was employed to generate signal files for ATAC-seq 99 

data. Three different signal files were obtained from the same ATAC-seq alignment after file, filtering 100 

sequencing fragments according to its length: ATAC (include all sequencing fragments), Open (include 101 

fragments with less than 100 bp, which correspond with fragments associated with Nucleosome 102 

Depleted fragments) and MonoNuc (include fragments with sizes in the range [180, 240 bp], which 103 

correspond with mononucleosomal fragments). 104 

2.4 Clustering of regions 105 

The peaks obtained were classified according to five indices corresponding to morphological 106 

characteristics of the peak: height, area, maximum width, number of local peaks and the M index. The 107 

clustering based on these indices was done using the SIC-ChIP pipeline 108 

(https://github.com/marziacremona/SIC-ChIP). Parameters related to the peak’s indices were the same 109 

as in the original study. 110 

To classify those peaks according to the five indices, k-means algorithm was employed obtaining ten 111 

different clusters for each different input: ATAC, Open, MonoNuc and a clustering using the combined 112 

indices for Nucleosome Depleted and Mononucleosomal fragments (Open-MonoNuc).  113 

2.5 Clustering characterisation  114 
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ComplexHeatmaps R package used for generating heatmaps of shared regions, the heatmaps were 115 

scaled to rows and columns for each type of data input.  116 

Histone modifications profiles were generated from intensity matrices obtained using ComputeMatrix 117 

from deeptools Suite (https://deeptools.readthedocs.io/en/develop/content/tools/computeMatrix.html). 118 

The intensity matrix was instructed to start in the centre point and extended 3 kb upstream and 119 

downstream using a bin size of 10 bp. 120 

2.6 Enrichment of motives.  121 

Motif search and enrichment for each of the clusters was carried out using the MEME suite tool, FIMO 122 

(https://meme-suite.org/meme/doc/fimo.html). For the enrichment analyses, scrambleFasta.pl from 123 

HOMER (http://homer.ucsd.edu/homer/motif/fasta.html) was used for obtaining 5x background 124 

sequences for each category. 125 

Enrichment in each cluster was calculated as shown in the formula down below. Subsequently, a 126 

Fisher's test was performed to assign an enrichment p-value to each motif. In order to take the most 127 

significant motifs from each cluster, those with an enrichment greater than 1.5 and a p-value less than 128 

0.05 were filtered out. 129 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =

𝑀𝑜𝑡𝑖𝑓𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖
𝑀𝑜𝑡𝑖𝑓𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙

𝑀𝑜𝑡𝑖𝑓𝑠𝐵𝐺  𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖
𝑀𝑜𝑡𝑖𝑓𝑠𝐵𝐺𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙

 130 

 131 

*MotifsBG: Significative motives that appeared in the background sequences 132 

 133 

 134 

2.7 Ontological analysis of motives 135 

Clusters’ genes associated to regions  were classified according to their involvement in different 136 

cellular processes. This motives annotation was performed with the GREAT tool 137 

(https://github.com/jokergoo/rGREAT). The mode used was the basal plus. extension Further 138 

parameters for the analysis were adv_upstream = 50 kb, adv_downstream = 50 kb, adv_span = 1000 139 

kb.  140 

2.8 Prediction model based on binary logistic regression 141 

A binary logistic prediction model to discriminate between regulatory elements was developed using 142 

a generalized linear model. For the construction of this model, the step validation and collinearity 143 

analysis were performed determining the 5 standardized indices were appropriate to use.  144 

The model was subsequently validated both by the confusion matrix method and by ROC curves and 145 

AUC values, studying also the specificity and sensitivity.  146 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 147 

* 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 148 

 149 

3 Results and Discussions 150 

3.1 General workflow  151 

The goal we tried to achieve is to characterize the peak regions based on their morphological indices. 152 

To achieve that, we followed the workflow illustrated in Figure 1, where from the raw data we got the 153 

.bed files filtered and cleaned which were used for clustering of the peaks using SIC-ChIP software. 154 

Once we got the clusters, to identify the DNA elements and draw more relevant biological information 155 

from them we first made sure the indices and clusters were correct, then we annotated the regions of 156 

each cluster to identify the significant DNA elements that were part of them, studying histone marks, 157 

most relevant motifs and biological processes involved. Finally, to achieve a better classification of 158 

promoter and enhancer regions we developed a prediction model based on the five indices.  159 

3.2 Correlation between indices and identification of peaks 160 

Previously, SIC-ChIP software had already proven to be valid for reliable clustering of ChIP-seq peaks 161 

according to their morphology (Cremona et al., 2015). In this work we studied if this software can be 162 

used to classify ATAC-seq peaks. Of the five indices computed in SIC-ChIP, two of them are related 163 

to peak morphological features and the other three to peak complexity, details of the indices are given 164 

below.  165 

The height (h) and area (A) of the peak are related to its signal strength, i.e. the number of reads the 166 

region has. The maximum peak width (wh/2) is a measure also related to the signal strength; this 167 

parameter consists of the width of the peak at half its maximum height. 168 

The number of local peaks (plocal) is a parameter that must be smoothed to avoid an oversaturated signal 169 

of peaks, so it was estimated that to count the peak must be 50 nucleotides apart and that its difference 170 

with respect to the two contiguous local minima must be at least 20%. 171 

The M-index (M/h) is a noise resistant and smoothed, measure of the complexity of the peak. The 172 

calculation of this index is based on counting the number of edges obtained by generating a tree of 173 

rooted nodes associated to a peak. This tree is built based on a depth function that each nucleotide Xi 174 

has with respect to its previous nucleotide (Xi-1). Three cases can occur, (1) when the function 175 

decreases, we move towards the root to the parent of the current node, (2) when the function increases, 176 

a new node is created and (3) when the function remains constant, nothing is done. To standardize this 177 

index was divided by the maximum peak height since the index M depends on this parameter. 178 

To classify peaks according to their morphology, three different type of signal data was used as input: 179 

(1) data produced from all ATAC-seq sequencing fragments (ATAC), (2) from sequencing fragments 180 

with length less than 100 bp, which correspond with Nucleosome Depleted Regions (Open) and (3) 181 

from sequencing fragments with lengths in range [180-240] bp, that correspond with fragments 182 

associated with mononucleosomes (MonoNuc). Finally, indices computed from Open and MonoNuc 183 

signal files were combined to classify peaks according both indices together as the fourth type of input. 184 

Results from ATAC signal is shown as main results, while the analyses from other signals was shown 185 

as complementary analysis and will be shown as supplementary figures. 186 
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The indices studied showed varying degrees of correlation, being the most highly correlated area and 187 

height, as would intuitively be expected, while the rest of parameters showed a poorer correlation 188 

between them (Figure 2a), correlation that was consistent for the other types of input as well 189 

(Supplementary Figure 1). We also plotted the distribution of indices values for each cluster (Figure 190 

2b), which revealed that the clusters showed differences in the means of each of the indices studied. 191 

The largest differences are seen in the number of local peaks, being the height the index that shows the 192 

least differences between clusters. The distribution found in the vast majority of the clusters is around 193 

the means, with short outlier tails except in specific cases such as cluster 2 of the Open data 194 

(Supplementary Figure 2b), which has a wider distribution with larger tails of outliers, mainly due to 195 

the fact that cluster 2 has very few regions so that outliers have a strong impact on the distribution. As 196 

shown in the violin plots of Figure 2b from ATAC signal data the M-index and the local peaks were 197 

more unevenly distributed with less accuracy in the mean due to the higher variability even by using 198 

the standardized data, however, means still showed enough differences to be considered a distinctive 199 

signature of each cluster. 200 

Peaks of each of cluster were inspected in IGV (Integrative Genomics Viewer) to assess correct 201 

clustering and some of the most representative ones of ATAC signal data are shown in Figure 3, while 202 

the rest of the inputs’ clusters are shown on Supplementary Figure 3 showing that the shape of the peak 203 

was different depending on the type of input. All these data suggest that proposed indices are proved 204 

to be valid for a correct clustering of ATAC, Open, MonoNuc and combined Open-MonoNuc signal 205 

data. 206 

3.3 Characterization of clusters  207 

To study the correspondence between clusters identified with the 4 different kinds of clustering 208 

according to its input data, we plotted the percentage of overlapping of peaks between clusters (Figure 209 

4a, Supplementary figure 4). Although a certain correspondence can be seen, heatmaps shown in Figure 210 

4a revealed that there is no direct correspondence between the peaks of each of the clusters, showing 211 

that clusters identified in different clustering are distinct depending on which kind of input data to use. 212 

It is also noticeable that the composition of each cluster is heterogeneous in terms of their percentage 213 

of promoters and enhancers, finding clusters such as 1 and 5 (of the clustering performed with ATAC 214 

data) where almost 75% are promoters while others such as clusters 3 and 4 do not reach 10% (Figure 215 

4b). This diversity in composition also occurred for the rest of the input data (Supplementary Figure 216 

5), there was not a cluster in particular that remained consistently enriched in promoters or enhancers 217 

in all the 4 inputs of data.  218 

On the heatmaps can be seen how there is a decent overlap of regions between certain clusters like 219 

cluster 1 of ATAC and cluster 5 of Open signal data, when attending to their composition of enhancers 220 

and promoters both clusters have a high percentage of promoter regions. This correlation can also be 221 

seen with the clusters 3 and 4 of ATAC and cluster 2 of Open signal data which have a high overlap 222 

of regions, in this case the three clusters are very poor on promoter regions. 223 

Then, we wanted to study the chromatin signature of the different clusters. To achieve this, we studied 224 

the distribution of three different histone modifications (H3K4me1, H3K4me3 and H3K27ac) along 225 

with ATAC-seq reads distribution. In Figure 5a we plotted the shape of the peaks of the clusters. The 226 

appreciated topography of the clusters remained simple with one or two peaks varying in height and 227 

area. For example, the peaks of ATAC clusters’ 1 and 10 are high and narrow with only one peak, 228 

while clusters 3, 4, 7 and 8 are generally shorter with very reduced area; peaks of clusters 2 and 9 are 229 

wider with two peaks. These different shapes are a good indication that the DNA regions sorted 230 
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according to the proposed indices may be sufficient to achieve a good separation of the regions, 231 

providing critical information on the functions they play in cell regulation. 232 

The H3K4me3 histone modification is generally restricted to narrow regions at the 5-terminus of the 233 

gene body (promoters), although a small subset of genes has a broad H3K4me3 domain that covers the 234 

majority of the coding region (Cao et al., 2017). Genes tagged with the broad epigenetic domain contain 235 

a number of epigenetic modifications complementary to trimethylation such as H3K27ac. These genes 236 

are thought to be involved in essential cellular identity and functions and have clinical potential as 237 

biomarkers for patient stratification (Beacon et al., 2021). In this study it can be seen that those clusters 238 

with high signal intensity for H3K4 trimethylation also correspond to high signal for lysine 27 239 

acetylation and could therefore be these domain wide regions (Figure 5c-d). However further studies 240 

on other characteristic histone marks such as H4K12ac, H4K20me1, H2BK5me and H4R3me2a 241 

(Beacon et al., 2020) and ontology studies are needed to determine the cellular functions of these genes. 242 

Another important aspect to highlight is the H3K4me1/H3K4me3 ratio. It is known that high presence 243 

of H3K4me1 is a signal of enhancers, whereas a high presence of H3K4me3 is related to promoters 244 

(Soldi et al., 2017). According to the intensity plots, all clusters show a high monomethylation signal, 245 

however clusters 3, 4, 6, and 7 show the highest K4me1/K4me3 ratio since their level of trimethylation 246 

is the lowest. This corresponds to the low percentage of promoters in these clusters being 5%, 7%, 247 

30%, and 11% respectively, meaning they are highly enriched in enhancers. Furthermore, H3K27ac is 248 

a typical mark of active enhancers. Since clusters 3, 4 and 7 have low level of H3K27ac, it is possible 249 

that these enhancers are in a not fully active configuration. Enhancers that present H3K4me1 but not 250 

H3K27ac are often called poised or primed (Crispatzu et al., 2021). Therefore, it is possible that these 251 

three clusters are enriched in poised enhancers. This relation was consistent for the other 3 types of 252 

inputs as it can be seen in the Supplementary figures 6-8. 253 

In conclusion these results show that peaks clustering based on their morphology allow a general 254 

distinction of the regulator regions according to their nature, observing clusters with a high percentage 255 

of enhancers with high H3K4me1/H3K4me3 ratio, while those clusters enriched in promoters have a 256 

low H3K4me1/H3K4me3 ratio. 257 

3.4 Search and enrichment of motifs 258 

Then we asked if clusters with different morphology are enriched in motifs of specific transcription 259 

factors. Prior to performing the enrichment analysis, a series of random sequences of similar 260 

composition to our study sequences, known as background sequences, were generated to ensure that 261 

the motif classification was consistent and to avoid biases due to the A-T and C-G composition of the 262 

sequences. 263 

To achieve this, we computed the enrichment of transcription factor binding motifs found in JASPAR 264 

vertebrate database for each cluster against the rest of the clusters. Most significant motifs for each 265 

cluster are shown in Figure 6.  266 

It is remarkable the correlation between the TFs that appear on clusters and their composition of 267 

enhancers or promoters, for example in clusters mainly dominated by promoter regions (cluster 1 and 268 

5) we find NF-YA and NF-YB two subunits of the NF-Y protein which is known for binding directly 269 

on the CCAAT-box of promoters (Mantovani, 1999). and E2F family proteins that binds to the 270 

TTTCCCGC site in the target promoter sequence and is highly involve in cell proliferation due to its 271 

role in the control of the transition from phase G1 to S (Gaubatz et al., 2000). On Figure 6 of ATAC 272 

data, another group of factors that had high significance in both enrichment and p-value were Sox2, 273 
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Smad4 and TEAD3 of clusters 3 and 4. All involved in cell proliferation, differentiation, and 274 

maturation, Sox2 participating in the maintenance of the pluripotent form of embryonic cells, Smad4 275 

being an important transcription factor in the TGF signalling pathway and TEAD3 being a key factor 276 

regulating epithelial cell maturation (Adachi et al., 2010; Zhao et al., 2018; Li et al., 2020). All these 277 

factors are typically enhancer binding proteins. 278 

The motif enrichment analysis on the other inputs showed some relevant ones such as the case of the 279 

transcription factor CTCF which is highly represented in cluster 2 of the mononucleosomes data 280 

(Supplementary Figure 9b) and present in other clusters. This factor consists of 11 highly conserved 281 

zinc fingers with which it can bind to multiple regions of the genome. One of the unique functions of 282 

CTCF is its insulator function. Insulators are short nucleotide sequences that establish boundaries 283 

between nearby genomic domains. When CTCF binds to an insulator sequence, it prevents 284 

communication between an enhancer and a gene promoter by blocking gene transcription (Kim et al., 285 

2015). It also plays a key role in the 3D organization of the genome and the maintenance of 286 

topologically associated DNA domains (TADs) by maintaining the structure of the loops as two of 287 

these proteins interact with each other to isolate segments of the genome, thus favouring the 288 

connections within the domain itself and allowing for a more fine-grained regulation of the domain 289 

(Ghirlando & Felsenfeld, 2016). 290 

Analysis revealed cis-regulatory logic through known motifs (e.g., AP-1, ETV, ZNF and ELK sites) 291 

and less common ones (e.g., CTCF, Tead and NF1). Many DNA-binding transcription factors, which 292 

recognise these cis-motifs, are markedly up-regulated. However, the clustering did not allow a fine and 293 

clear separation of the motives from each cluster only providing information about the most the general 294 

cis or trans regulation of them.  295 

3.5 Ontology analysis  296 

Since clusters have shown to have distinctive characteristics and different motives associated to genes, 297 

we carried out an ontological analysis in hope to find if the genes associated to the regions of each 298 

cluster were involved in similar biological processes. To achieve that we performed the annotation 299 

using the rGREAT tool with the basal plus extension mode in which each gene is assigned a basal 300 

regulatory domain of a minimum distance upstream and downstream of the TSS (regardless of other 301 

nearby genes). The gene regulatory domain is extended in both directions to the nearest gene's basal 302 

domain but no more than the maximum extension in one direction. 303 

Subsequently, also with the GREAT tool, the genes associated to the peaks were annotated and 304 

classified according to their annotation in Gene Ontology (GO) of biological process, obtaining 305 

different processes among the clusters, but at the same time the processes found within clusters were 306 

more related to each other. As shown in Supplementary Table 1, clusters 1, 4 or 5 of the ATAC-seq 307 

data are involved in different biological processes, while cluster 1 is very significantly enriched in 308 

regions associated with genes related to the regulation of RNA metabolism, DNA repair and chromatin 309 

accessibility, cluster 4 has regions mostly related to cell migration and angiogenesis, and cluster 5 310 

seems to contain genes involved in protein maturation and modification in the endoplasmic reticulum 311 

and Golgi (See Supplementary Tables 1-4).  312 

This ontology analysis revealed interesting biological insights about the morphological based clustered 313 

regions. Showing how the shape of the peak can be related with the biological functions of the genes 314 

associated to the DNA regions.  315 
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3.6 Logistic regression model 316 

An important part of the peaks analysis is to determine the nature of the regions in order to find more 317 

about their role in the regulation of DNA expression. That is why we developed a binary logistic 318 

regression model with the standardized data of the five morphological indices to determine on the basis 319 

of the morphological indices of the peak whether the region is considered a promoter or enhancer. The 320 

variables were first evaluated by a Step test and a collinearity analysis to determine if they would 321 

provide enough significant information to the model.  322 

The five indices were analyzed to see how promoters and enhancers were distributed (Figure 7a), with 323 

the former having a higher mean for all indices as well as a higher range and standard deviation, 324 

although this is again due to the fact that fewer outliers have a greater impact on the distribution. Once 325 

again, this distribution was consistent in the four types of inputs (Supplementary figures 10-12a). 326 

The model was evaluated, and it proved to be very robust according to the tests performed. A high 327 

accuracy rate was obtained for promoters (>70%) and even better for enhancers (>85%). This better 328 

classification of the enhancers is mainly due to their higher abundance. The model was also validated 329 

via Roc Curves method, achieving as well good results of confidence since the area under the curve 330 

was above 0.80 in all the four types of data (Figure 7b, c; Supplementary figures 10-12b). 331 

While clustering itself did not allow a separation of the promoter and enhancer regions of the peaks, 332 

this model involving the morphological indices did help to clarify the differences between the two gene 333 

elements with a high accuracy rate, making it interesting for mapping promoter enriched or enhancer 334 

enriched domains in the genome. On Figure 7d we show the comparison of percentages of promoters’ 335 

regions of each cluster versus the percentage we got from the predicted model seeing that the 336 

predictions are very close to the true values. It is also interesting evaluate some of the peaks that are 337 

not predicted correctly. For example, some enhancers act also as promoters of lncRNA (Lam et al., 338 

2014). Therefore, it is possible that some peaks annotated as enhancers but that our model predicts as 339 

promoters have a hybrid function.  340 

4 Conclusions 341 

The classification and characterization of genome regions based on the characteristics of the peaks 342 

generated in ChIP-seq studies has been validated on many occasions and it has been shown that the 343 

characteristic morphology of each peak can provide relevant biologically meaningful information. In 344 

this analysis we have shown how this classification method is also applicable to ATAC-seq data. The 345 

clusters obtained all presented a distinctive signature in terms of their distribution and the overlap was 346 

minimal. Furthermore, thanks to the study of histone marks, it was possible to characterize how each 347 

cluster had a characteristic distribution with a biological meaning in relation to the percentage of 348 

promoters and enhancers, which was later contrasted and corroborated by both the literature and the 349 

analysis of the motifs. However, the separation by clusters does not allow a reliable separation of the 350 

function of the genes under distinctive ontological terms, nor does it allow a direct determination of 351 

which regions are promoters and which are enhancers. For this reason, the binary logistic regression 352 

model was developed to provide more information about the composition of each cluster. Further 353 

analysis can be performed to enrich this information such as enhancer RNA analysis or including more 354 

parameters into the logistic model to refine it and enhance its predictive power making it able to identify 355 

other elements such as insulators or poised enhancers. Overall, the results we got are a very interesting 356 

starting point, revealing general information of the nature of the DNA elements studied, for more 357 

analysis to be performed using this clustering method for ATAC-seq data.  358 
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Figure Legends. 442 

Figure 1. Diagram of the workflow followed for the analysis of the ATAC-seq peaks clusters’ indices, 443 

annotation of the clusters’ peaks and elaboration of the predictive model. Packages and pipelines 444 

specified on the graph next to each step 445 

Figure 2. a) Scatter plot representing the Pearson correlation between each of the 5 indices for the 446 

ATAC standardized data. Indices names: h, peak height; A, peak area; wh/2, maximum peak width; 447 

plocal, number of local peaks; M/h, M-index normalized to h. b) Violin plot representing the 448 

distributions of each of the ATAC clusters in each of the indices. 449 

Figure 3 Regions of significant peaks in each of the clusters of the ATAC data taken from IGV. Peaks 450 

were taken with a window size of 48 kb, each of the clusters were aligned with the complete genome 451 

ATAC-seq data. 452 

Figure 4. a) Heatmaps summarizing the number of overlapping regions of each of the ATAC signal 453 

data clusters with those of open chromatin (Open), mononucleosome regions (MonoNuc) and the 454 

combination of both (Open MonoNuc). The heatmaps are scaled respect to the number of elements of 455 

each of ATAC clusters. The summatory of each row represents the size of each ATAC cluster and the 456 

summatory of each column represents the size of each cluster for the other three input data. b) 457 

Percentage of the clusters that are identified as promoter regions for the ATAC data based on the list 458 

of TSS regions file. 459 

Figure 5. Plots representing the distribution of the corresponding marks of the ATAC data. The 460 

intensity of each bin is plotted at a central point of the cluster regions and spread 3kb in each direction. 461 

a) Distribution of the ATAC signal data reads over the different clusters. b) Distribution of the 462 

H3K4me1 histone mark, c) Distribution of the H3K4me3 histone mark, d) Distribution of the H3K27ac 463 

histone mark. 464 

Figure 6. Profile of the transcription factors associated to the most significant motifs found in the 465 

analysis for each cluster of the ATAC data. The transcription factors shown are filtered by enrichment 466 

and p-value (Enr > 1.5, p-value < 0.05). 467 

Figure 7 Relevant information and graphics about the prediction model of ATAC signal data. a) 468 

Distribution of the five morphological indices depending on the nature of the classified region promoter 469 
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or enhancer. b) Representation of the area under the curve evaluation method. ROC Curve representing 470 

sensibility over. c) Confusion matrix for model validation predictions being on the x axis and 471 

observations on y axis. d) Percentaje comparing the promoter regions predicted by the model for each 472 

cluster versus the true percentaje of true promoter regions of each cluster. 473 

Table headers 474 

Supplementary table 1-4. Enrichment tables summarizing the most relevant Gene Ontology 475 

biological processes of the genes associated to the regions of each of the clusters for the four types of 476 

input data, in order being 1) ATAC, 2) Open, 3) MonoNuc, 4) Open MonoNuc. Tables were obtained 477 

using the rGREAT annotation analysis, sorted by binom and HypeRank q-value in excel and taken the 478 

first 20 most significant processes. 479 
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