Mostrar el registro sencillo del ítem
Biocorrosión de muestras de hormigón en condiciones controladas de laboratorio
dc.contributor.author | Gordis Santana, Frank Ernesto | |
dc.date.accessioned | 2024-06-21T08:17:37Z | |
dc.date.available | 2024-06-21T08:17:37Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/10334/8857 | |
dc.description | 57 páginas. | es |
dc.description.abstract | Trabajo Fin de Máster Universitario en Tecnología Ambiental (2023/24). Tutor: Dr. D. Francisco Córdoba García. La Faja Pirítica es considerada como una de las mayores concentraciones de sulfuros masivos de la corteza terrestre. En un escenario ambiental inusual que refleja la belleza de un ambiente geológico que durante siglos ha sido testigo de extracciones de los minerales que se concentran en sus depósitos y donde, la presencia de estructuras de hormigón asociados a la minería y las actividades de la construcción y geológicas han progresado, se hace evidente la degradación de cientos de kilómetros de la red fluvial por el Drenaje Ácido de Mina (AMD) que transporta una serie de minerales que en contacto con el oxígeno produce reacciones químicas capaces de liberar al medio cantidades ingentes de metales como el hierro que le otorga al río su color característico. Estas reacciones catalizadas por la acción de agentes químicos y de organismos extremófilos que encuentran las condiciones ideales en estos ecosistemas para multiplicarse, provocan la acidez a partir de un proceso que durante miles de años ha provocado la oxidación de los sulfuros que afloran. Por tanto, en este contexto la vulnerabilidad de estructuras de hormigón asociadas a las actividades mineras es alta puesto que la oxidación microbiológica está incidiendo negativamente sobre los elementos estructurales manifestándose en estos: agrietamientos, pérdida de volumen y la oxidación anticipada en acero y hormigón. Con el objetivo de analizar el potencial oxidativo de los consorcios bacterianos propios de las aguas afectadas por AMD se investigó su actividad sobre probetas de hormigón bajo condiciones controladas de laboratorio. En los experimentos realizados se midieron la evolución del pH, conductividad y potencial redox, la proporción de Fe2+/Fe3+, la concentración de diversos elementos químicos mediante ICP-óptico. También se analizaron los precipitados formados mediante SEM-EDS y se realizó un seguimiento macro- y microscópico de las muestras. Los resultados obtenidos muestran efectos diferenciales cuando el hormigón se cultivó en medios que contenían bacterias con relación a los medios esterilizados por filtración. Estos resultados se discuten sobre la función catalítica de las bacterias quimiolitotrofas oxidantes de hierro y/o azufre (como Acidithiobacillus o Leptospirillum) así como de otras bacterias heterótrofas que pueden oxidar compuestos orgánicos usando iones férricos como aceptores de electrones (ej. Acidiphillium sp) | es |
dc.description.abstract | The Pyritic Belt is considered one of the largest concentrations of massive sulfides in the Earth's crust. In an unusual environmental scenario that reflects the beauty of a geological environment that has witnessed mineral extractions concentrated in its deposits for centuries, the presence of concrete structures associated with mining, construction activities, and geological advancements highlights the degradation of hundreds of kilometers of river networks due to Acid Mine Drainage (AMD). This drainage carries a series of minerals that, upon contact with oxygen, trigger chemical reactions capable of releasing vast amounts of metals into the environment, such as iron, which gives the river its characteristic color. These reactions, catalyzed by chemical agents and extremophilic organisms finding ideal conditions in these ecosystems to multiply, cause acidity through a process that, for thousands of years, has resulted in the oxidation of the exposed sulfides. Consequently, in this context, the vulnerability of concrete structures associated with mining activities is high, given that microbiological oxidation is negatively impacting the structural elements, leading to cracking, volume loss, and premature oxidation in both steel and concrete. To analyze the oxidative potential of bacterial consortia present in waters affected by AMD, their activity on concrete test specimens was investigated under controlled laboratory conditions. The experiments measured the evolution of pH, conductivity, redox potential, the Fe2+/Fe3+ ratio, the concentration of various chemical elements via Optical ICP, and analyzed the precipitates formed using SEM-EDS. Macro- and microscopic monitoring of the samples was also conducted. The results obtained revealed differential effects when concrete was cultivated in media containing bacteria compared to media sterilized by filtration. These results are discussed concerning the catalytic function of iron- and sulfur-oxidizing chemolithotrophic bacteria (such as Acidithiobacillus or Leptospirillum) as well as other heterotrophic bacteria capable of oxidizing organic compounds using ferric ions as electron acceptors (e.g., Acidiphilium sp). | en |
dc.language.iso | spa | es |
dc.publisher | Universidad Internacional de Andalucía | es |
dc.relation.ispartofseries | Máster Universitario en Tecnología Ambiental | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Hormigón | es |
dc.subject | Biocorrosión | es |
dc.subject | Drenaje ácido de mina | es |
dc.subject | Oxidación microbiológica | es |
dc.title | Biocorrosión de muestras de hormigón en condiciones controladas de laboratorio | es |
dc.type | masterThesis | es |
dc.rights.accessRights | openAccess | es |